亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Analogy-making between narratives is one of the most critical abilities in natural language understanding. In this paper, we evaluate the ability to identify and generate analogy by building a first-of-its-kind large-scale story-level analogy corpus, StoryAnalogy, which contains 24K story pairs from diverse domains with human annotations on two similarities from the extended Structure-Mapping Theory. We design a set of tests on StoryAnalogy, presenting the first evaluation of story-level analogy identification and generation. Interestingly, we find that the analogy identification tasks are extremely challenging not only for the sentence embedding models but also for the recent large language models (LLMs) such as ChatGPT and LLaMa, where ChatGPT only achieved around 30% accuracy in multiple-choice questions (> 85% accuracy for humans). Finally, we find that data in StoryAnalogy can improve LLMs analogy generation quality, where a fine-tuned FlanT5-xxl model yields comparable performance to zero-shot ChatGPT.

相關內容

In this paper, we introduce a novel algorithm - the Skill-Driven Skill Recombination Algorithm (SDSRA) - an innovative framework that significantly enhances the efficiency of achieving maximum entropy in reinforcement learning tasks. We find that SDSRA achieves faster convergence compared to the traditional Soft Actor-Critic (SAC) algorithm and produces improved policies. By integrating skill-based strategies within the robust Actor-Critic framework, SDSRA demonstrates remarkable adaptability and performance across a wide array of complex and diverse benchmarks.

This work investigates the potential of undermining both fairness and detection performance in abusive language detection. In a dynamic and complex digital world, it is crucial to investigate the vulnerabilities of these detection models to adversarial fairness attacks to improve their fairness robustness. We propose a simple yet effective framework FABLE that leverages backdoor attacks as they allow targeted control over the fairness and detection performance. FABLE explores three types of trigger designs (i.e., rare, artificial, and natural triggers) and novel sampling strategies. Specifically, the adversary can inject triggers into samples in the minority group with the favored outcome (i.e., "non-abusive") and flip their labels to the unfavored outcome, i.e., "abusive". Experiments on benchmark datasets demonstrate the effectiveness of FABLE attacking fairness and utility in abusive language detection.

In this paper, we give a stable and efficient method for fixing self-intersections and non-manifold parts in a given embedded simplicial complex. In addition, we show how symmetric properties can be used for further optimisation. We prove an initialisation criterion for computation of the outer hull of an embedded simplicial complex. To regularise the outer hull of the retriangulated surface, we present a method to remedy non-manifold edges and points. We also give a modification of the outer hull algorithm to determine chambers of complexes which gives rise to many new insights. All of these methods have applications in many areas, for example in 3D-printing, artistic realisations of 3D models or fixing errors introduced by scanning equipment applied for tomography. Implementations of the proposed algorithms are given in the computer algebra system GAP4. For verification of our methods, we use a data-set of highly self-intersecting symmetric icosahedra.

In this paper we tackle the problem of learning Structure-from-Motion (SfM) through the use of graph attention networks. SfM is a classic computer vision problem that is solved though iterative minimization of reprojection errors, referred to as Bundle Adjustment (BA), starting from a good initialization. In order to obtain a good enough initialization to BA, conventional methods rely on a sequence of sub-problems (such as pairwise pose estimation, pose averaging or triangulation) which provides an initial solution that can then be refined using BA. In this work we replace these sub-problems by learning a model that takes as input the 2D keypoints detected across multiple views, and outputs the corresponding camera poses and 3D keypoint coordinates. Our model takes advantage of graph neural networks to learn SfM-specific primitives, and we show that it can be used for fast inference of the reconstruction for new and unseen sequences. The experimental results show that the proposed model outperforms competing learning-based methods, and challenges COLMAP while having lower runtime.

Coronal mass ejections (CMEs) are massive solar eruptions, which have a significant impact on Earth. In this paper, we propose a new method, called DeepCME, to estimate two properties of CMEs, namely, CME mass and kinetic energy. Being able to estimate these properties helps better understand CME dynamics. Our study is based on the CME catalog maintained at the Coordinated Data Analysis Workshops (CDAW) Data Center, which contains all CMEs manually identified since 1996 using the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory (SOHO). We use LASCO C2 data in the period between January 1996 and December 2020 to train, validate and test DeepCME through 10-fold cross validation. The DeepCME method is a fusion of three deep learning models, including ResNet, InceptionNet, and InceptionResNet. Our fusion model extracts features from LASCO C2 images, effectively combining the learning capabilities of the three component models to jointly estimate the mass and kinetic energy of CMEs. Experimental results show that the fusion model yields a mean relative error (MRE) of 0.013 (0.009, respectively) compared to the MRE of 0.019 (0.017, respectively) of the best component model InceptionResNet (InceptionNet, respectively) in estimating the CME mass (kinetic energy, respectively). To our knowledge, this is the first time that deep learning has been used for CME mass and kinetic energy estimations.

In this paper, we introduce a novel fine-tuning technique for language models, which involves incorporating symmetric noise into the embedding process. This method aims to enhance the model's function by more stringently regulating its local curvature, demonstrating superior performance over the current method, NEFTune. When fine-tuning the LLaMA-2-7B model using Alpaca, standard techniques yield a 29.79% score on AlpacaEval. However, our approach, SymNoise, increases this score significantly to 69.04%, using symmetric noisy embeddings. This is a 6.7% improvement over the state-of-the-art method, NEFTune~(64.69%). Furthermore, when tested on various models and stronger baseline instruction datasets, such as Evol-Instruct, ShareGPT, OpenPlatypus, SymNoise consistently outperforms NEFTune. The current literature, including NEFTune, has underscored the importance of more in-depth research into the application of noise-based strategies in the fine-tuning of language models. Our approach, SymNoise, is another significant step towards this direction, showing notable improvement over the existing state-of-the-art method.

In this paper, we aim to design and analyze distributed Bayesian estimation algorithms for sensor networks. The challenges we address are to (i) derive a distributed provably-correct algorithm in the functional space of probability distributions over continuous variables, and (ii) leverage these results to obtain new distributed estimators restricted to subsets of variables observed by individual agents. This relates to applications such as cooperative localization and federated learning, where the data collected at any agent depends on a subset of all variables of interest. We present Bayesian density estimation algorithms using data from non-linear likelihoods at agents in centralized, distributed, and marginal distributed settings. After setting up a distributed estimation objective, we prove almost-sure convergence to the optimal set of pdfs at each agent. Then, we prove the same for a storage-aware algorithm estimating densities only over relevant variables at each agent. Finally, we present a Gaussian version of these algorithms and implement it in a mapping problem using variational inference to handle non-linear likelihood models associated with LiDAR sensing.

In this paper, we propose an efficient and high-performance method for partially relevant video retrieval (PRVR), which aims to retrieve untrimmed long videos that contain at least one relevant moment to the input text query. In terms of both efficiency and performance, the overlooked bottleneck of previous studies is the visual encoding of dense frames. This guides researchers to choose lightweight visual backbones, yielding sub-optimal retrieval performance due to their limited capabilities of learned visual representations. However, it is undesirable to simply replace them with high-performance large-scale vision-and-language models (VLMs) due to their low efficiency. To address these issues, instead of dense frames, we focus on super images, which are created by rearranging the video frames in a $N \times N$ grid layout. This reduces the number of visual encodings to $\frac{1}{N^2}$ and compensates for the low efficiency of large-scale VLMs, allowing us to adopt them as powerful encoders. Surprisingly, we discover that with a simple query-image attention trick, VLMs generalize well to super images effectively and demonstrate promising zero-shot performance against SOTA methods efficiently. In addition, we propose a fine-tuning approach by incorporating a few trainable modules into the VLM backbones. The experimental results demonstrate that our approaches efficiently achieve the best performance on ActivityNet Captions and TVR.

In this paper, we present a comprehensive review of the imbalance problems in object detection. To analyze the problems in a systematic manner, we introduce a problem-based taxonomy. Following this taxonomy, we discuss each problem in depth and present a unifying yet critical perspective on the solutions in the literature. In addition, we identify major open issues regarding the existing imbalance problems as well as imbalance problems that have not been discussed before. Moreover, in order to keep our review up to date, we provide an accompanying webpage which catalogs papers addressing imbalance problems, according to our problem-based taxonomy. Researchers can track newer studies on this webpage available at: //github.com/kemaloksuz/ObjectDetectionImbalance .

We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{//github.com/RuochenFan/S4Net}.

北京阿比特科技有限公司