亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

3D Multi-object tracking (MOT) empowers mobile robots to accomplish well-informed motion planning and navigation tasks by providing motion trajectories of surrounding objects. However, existing 3D MOT methods typically employ a single similarity metric and physical model to perform data association and state estimation for all objects. With large-scale modern datasets and real scenes, there are a variety of object categories that commonly exhibit distinctive geometric properties and motion patterns. In this way, such distinctions would enable various object categories to behave differently under the same standard, resulting in erroneous matches between trajectories and detections, and jeopardizing the reliability of downstream tasks (navigation, etc.). Towards this end, we propose Poly-MOT, an efficient 3D MOT method based on the Tracking-By-Detection framework that enables the tracker to choose the most appropriate tracking criteria for each object category. Specifically, Poly-MOT leverages different motion models for various object categories to characterize distinct types of motion accurately. We also introduce the constraint of the rigid structure of objects into a specific motion model to accurately describe the highly nonlinear motion of the object. Additionally, we introduce a two-stage data association strategy to ensure that objects can find the optimal similarity metric from three custom metrics for their categories and reduce missing matches. On the NuScenes dataset, our proposed method achieves state-of-the-art performance with 75.4\% AMOTA. The code is available at //github.com/lixiaoyu2000/Poly-MOT

相關內容

We propose a Digit-Serial Left-tO-righT (DSLOT) arithmetic based processing technique called DSLOT-NN with aim to accelerate inference of the convolution operation in the deep neural networks (DNNs). The proposed work has the ability to assess and terminate the ineffective convolutions which results in massive power and energy savings. The processing engine is comprised of low-latency most-significant-digit-first (MSDF) (also called online) multipliers and adders that processes data from left-to-right, allowing the execution of subsequent operations in digit-pipelined manner. Use of online operators eliminates the need for the development of complex mechanism of identifying the negative activation, as the output with highest weight value is generated first, and the sign of the result can be identified as soon as first non-zero digit is generated. The precision of the online operators can be tuned at run-time, making them extremely useful in situations where accuracy can be compromised for power and energy savings. The proposed design has been implemented on Xilinx Virtex-7 FPGA and is compared with state-of-the-art Stripes on various performance metrics. The results show the proposed design presents power savings, has shorter cycle time, and approximately 50% higher OPS per watt.

We present ForceSight, a system for text-guided mobile manipulation that predicts visual-force goals using a deep neural network. Given a single RGBD image combined with a text prompt, ForceSight determines a target end-effector pose in the camera frame (kinematic goal) and the associated forces (force goal). Together, these two components form a visual-force goal. Prior work has demonstrated that deep models outputting human-interpretable kinematic goals can enable dexterous manipulation by real robots. Forces are critical to manipulation, yet have typically been relegated to lower-level execution in these systems. When deployed on a mobile manipulator equipped with an eye-in-hand RGBD camera, ForceSight performed tasks such as precision grasps, drawer opening, and object handovers with an 81% success rate in unseen environments with object instances that differed significantly from the training data. In a separate experiment, relying exclusively on visual servoing and ignoring force goals dropped the success rate from 90% to 45%, demonstrating that force goals can significantly enhance performance. The appendix, videos, code, and trained models are available at //force-sight.github.io/.

The integration of Large Language Models (LLMs) into robotics has revolutionized human-robot interactions and autonomous task planning. However, these systems are often unable to self-correct during the task execution, which hinders their adaptability in dynamic real-world environments. To address this issue, we present a Hierarchical Closed-loop Robotic Intelligent Self-correction Planner (HiCRISP), an innovative framework that enables robots to correct errors within individual steps during the task execution. HiCRISP actively monitors and adapts the task execution process, addressing both high-level planning and low-level action errors. Extensive benchmark experiments, encompassing virtual and real-world scenarios, showcase HiCRISP's exceptional performance, positioning it as a promising solution for robotic task planning with LLMs.

The excellent text-to-image synthesis capability of diffusion models has driven progress in synthesizing coherent visual stories. The current state-of-the-art method combines the features of historical captions, historical frames, and the current captions as conditions for generating the current frame. However, this method treats each historical frame and caption as the same contribution. It connects them in order with equal weights, ignoring that not all historical conditions are associated with the generation of the current frame. To address this issue, we propose Causal-Story. This model incorporates a local causal attention mechanism that considers the causal relationship between previous captions, frames, and current captions. By assigning weights based on this relationship, Causal-Story generates the current frame, thereby improving the global consistency of story generation. We evaluated our model on the PororoSV and FlintstonesSV datasets and obtained state-of-the-art FID scores, and the generated frames also demonstrate better storytelling in visuals.

The prevalence of ubiquitous location-aware devices and mobile Internet enables us to collect massive individual-level trajectory dataset from users. Such trajectory big data bring new opportunities to human mobility research but also raise public concerns with regard to location privacy. In this work, we present the Conditional Adversarial Trajectory Synthesis (CATS), a deep-learning-based GeoAI methodological framework for privacy-preserving trajectory data generation and publication. CATS applies K-anonymity to the underlying spatiotemporal distributions of human movements, which provides a distributional-level strong privacy guarantee. By leveraging conditional adversarial training on K-anonymized human mobility matrices, trajectory global context learning using the attention-based mechanism, and recurrent bipartite graph matching of adjacent trajectory points, CATS is able to reconstruct trajectory topology from conditionally sampled locations and generate high-quality individual-level synthetic trajectory data, which can serve as supplements or alternatives to raw data for privacy-preserving trajectory data publication. The experiment results on over 90k GPS trajectories show that our method has a better performance in privacy preservation, spatiotemporal characteristic preservation, and downstream utility compared with baseline methods, which brings new insights into privacy-preserving human mobility research using generative AI techniques and explores data ethics issues in GIScience.

This paper presents Tag2Text, a vision language pre-training (VLP) framework, which introduces image tagging into vision-language models to guide the learning of visual-linguistic features. In contrast to prior works which utilize object tags either manually labeled or automatically detected with an off-the-shelf detector with limited performance, our approach explicitly learns an image tagger using tags parsed from image-paired text and thus provides a strong semantic guidance to vision-language models. In this way, Tag2Text can utilize large-scale annotation-free image tags in accordance with image-text pairs, and provides more diverse tag categories beyond objects. As a result, Tag2Text demonstrates the ability of a foundational image tagging model, with superior zero-shot performance even comparable to fully supervised models. Moreover, by leveraging the tagging guidance, Tag2Text effectively enhances the performance of vision-language models on both generation-based and alignment-based tasks. Across a wide range of downstream benchmarks, Tag2Text achieves state-of-the-art results with similar model sizes and data scales, demonstrating the efficacy of the proposed tagging guidance. Code, demo and pre-trained models are available at \url{//github.com/xinyu1205/recognize-anything}.

This paper aims to understand the impacts of various data combinations (e.g., web text, wikipedia, github, books) on the training of large language models using SlimPajama. SlimPajama is a rigorously deduplicated, multi-source dataset, which has been refined and further deduplicated to 627B tokens from the extensive 1.2T tokens RedPajama dataset contributed by Together. We've termed our research as SlimPajama-DC, an empirical analysis designed to uncover fundamental characteristics and best practices associated with employing SlimPajama in the training of large language models. During our research with SlimPajama, two pivotal observations emerged: (1) Global deduplication vs. local deduplication. We analyze and discuss how global (across different sources of datasets) and local (within the single source of dataset) deduplications affect the performance of trained models. (2) Proportions of high-quality/highly-deduplicated multi-source datasets in the combination. To study this, we construct six configurations of SlimPajama dataset and train individual ones using 1.3B Cerebras-GPT model with Alibi and SwiGLU. Our best configuration outperforms the 1.3B model trained on RedPajama using the same number of training tokens by a significant margin. All our 1.3B models are trained on Cerebras 16$\times$ CS-2 cluster with a total of 80 PFLOP/s in bf16 mixed precision. We further extend our discoveries (such as increasing data diversity is crucial after global deduplication) on a 7B model with large batch-size training. Our models and the separate SlimPajama-DC datasets are available at: //huggingface.co/MBZUAI-LLM and //huggingface.co/datasets/cerebras/SlimPajama-627B.

Federated Learning aims to learn machine learning models from multiple decentralized edge devices (e.g. mobiles) or servers without sacrificing local data privacy. Recent Natural Language Processing techniques rely on deep learning and large pre-trained language models. However, both big deep neural and language models are trained with huge amounts of data which often lies on the server side. Since text data is widely originated from end users, in this work, we look into recent NLP models and techniques which use federated learning as the learning framework. Our survey discusses major challenges in federated natural language processing, including the algorithm challenges, system challenges as well as the privacy issues. We also provide a critical review of the existing Federated NLP evaluation methods and tools. Finally, we highlight the current research gaps and future directions.

We propose a knowledge-enhanced approach, ERNIE-ViL, to learn joint representations of vision and language. ERNIE-ViL tries to construct the detailed semantic connections (objects, attributes of objects and relationships between objects in visual scenes) across vision and language, which are essential to vision-language cross-modal tasks. Incorporating knowledge from scene graphs, ERNIE-ViL constructs Scene Graph Prediction tasks, i.e., Object Prediction, Attribute Prediction and Relationship Prediction in the pre-training phase. More specifically, these prediction tasks are implemented by predicting nodes of different types in the scene graph parsed from the sentence. Thus, ERNIE-ViL can model the joint representation characterizing the alignments of the detailed semantics across vision and language. Pre-trained on two large image-text alignment datasets (Conceptual Captions and SBU), ERNIE-ViL learns better and more robust joint representations. It achieves state-of-the-art performance on 5 vision-language downstream tasks after fine-tuning ERNIE-ViL. Furthermore, it ranked the 1st place on the VCR leader-board with an absolute improvement of 3.7%.

This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.

北京阿比特科技有限公司