With the continuous advancement in autonomous systems, it becomes crucial to provide robust safety guarantees for safety-critical systems. Hamilton-Jacobi Reachability Analysis is a formal verification method that guarantees performance and safety for dynamical systems and is widely applicable to various tasks and challenges. Traditionally, reachability problems are solved by using grid-based methods, whose computational and memory cost scales exponentially with the dimensionality of the system. To overcome this challenge, DeepReach, a deep learning-based approach that approximately solves high-dimensional reachability problems, is proposed and has shown lots of promise. In this paper, we aim to improve the performance of DeepReach on high-dimensional systems by exploring different choices of activation functions. We first run experiments on a 3D system as a proof of concept. Then we demonstrate the effectiveness of our approach on a 9D multi-vehicle collision problem.
Neural networks offer good approximation to many tasks but consistently fail to reach perfect generalization, even when theoretical work shows that such perfect solutions can be expressed by certain architectures. Using the task of formal language learning, we focus on one simple formal language and show that the theoretically correct solution is in fact not an optimum of commonly used objectives -- even with regularization techniques that according to common wisdom should lead to simple weights and good generalization (L1, L2) or other meta-heuristics (early-stopping, dropout). However, replacing standard targets with the Minimum Description Length objective (MDL) results in the correct solution being an optimum.
Modified policy iteration (MPI) is a dynamic programming algorithm that combines elements of policy iteration and value iteration. The convergence of MPI has been well studied in the context of discounted and average-cost MDPs. In this work, we consider the exponential cost risk-sensitive MDP formulation, which is known to provide some robustness to model parameters. Although policy iteration and value iteration have been well studied in the context of risk sensitive MDPs, MPI is unexplored. We provide the first proof that MPI also converges for the risk-sensitive problem in the case of finite state and action spaces. Since the exponential cost formulation deals with the multiplicative Bellman equation, our main contribution is a convergence proof which is quite different than existing results for discounted and risk-neutral average-cost problems as well as risk sensitive value and policy iteration approaches. We conclude our analysis with simulation results, assessing MPI's performance relative to alternative dynamic programming methods like value iteration and policy iteration across diverse problem parameters. Our findings highlight risk-sensitive MPI's enhanced computational efficiency compared to both value and policy iteration techniques.
The development of blood-handling medical devices, such as ventricular assist devices, requires the analysis of their biocompatibility. Among other aspects, this includes hemolysis, i.e., red blood cell damage. For this purpose, computational fluid dynamics (CFD) methods are employed to predict blood flow in prototypes. The most basic hemolysis models directly estimate red blood cell damage from fluid stress in the resulting flow field. More advanced models explicitly resolve cell deformation. On the downside, these models are typically written in a Lagrangian formulation, i.e., they require pathline tracking. We present a new Eulerian description of cell deformation, enabling the evaluation of the solution across the whole domain. The resulting hemolysis model can be applied to any converged CFD simulation due to one-way coupling with the fluid velocity field. We discuss the efficient numerical treatment of the model equations in a stabilized finite element context. We validate the model by comparison to the original Lagrangian formulation in selected benchmark flows. Two more complex test cases demonstrate the method's capabilities in real-world applications. The results highlight the advantages over previous hemolysis models. In conclusion, the model holds great potential for the design process of future generations of medical devices.
The human-like automatic deductive reasoning has always been one of the most challenging open problems in the interdiscipline of mathematics and artificial intelligence. This paper is the third in a series of our works. We built a neural-symbolic system, called FGeoDRL, to automatically perform human-like geometric deductive reasoning. The neural part is an AI agent based on reinforcement learning, capable of autonomously learning problem-solving methods from the feedback of a formalized environment, without the need for human supervision. It leverages a pre-trained natural language model to establish a policy network for theorem selection and employ Monte Carlo Tree Search for heuristic exploration. The symbolic part is a reinforcement learning environment based on geometry formalization theory and FormalGeo\cite{FormalGeo}, which models GPS as a Markov Decision Process\cite{MDP}. In this formal symbolic system, the known conditions and objectives of the problem form the state space, while the set of theorems forms the action space. Leveraging FGeoDRL, we have achieved readable and verifiable automated solutions to geometric problems. Experiments conducted on the formalgeo7k dataset have achieved a problem-solving success rate of 86.40\%. The project is available at //github.com/PersonNoName/FGeoDRL.
Despite the impressive generalization capabilities of deep neural networks, they have been repeatedly shown to be overconfident when they are wrong. Fixing this issue is known as model calibration, and has consequently received much attention in the form of modified training schemes and post-training calibration procedures such as temperature scaling. While temperature scaling is frequently used because of its simplicity, it is often outperformed by modified training schemes. In this work, we identify a specific bottleneck for the performance of temperature scaling. We show that for empirical risk minimizers for a general set of distributions in which the supports of classes have overlaps, the performance of temperature scaling degrades with the amount of overlap between classes, and asymptotically becomes no better than random when there are a large number of classes. On the other hand, we prove that optimizing a modified form of the empirical risk induced by the Mixup data augmentation technique can in fact lead to reasonably good calibration performance, showing that training-time calibration may be necessary in some situations. We also verify that our theoretical results reflect practice by showing that Mixup significantly outperforms empirical risk minimization (with respect to multiple calibration metrics) on image classification benchmarks with class overlaps introduced in the form of label noise.
The process of camera calibration involves estimating the intrinsic and extrinsic parameters, which are essential for accurately performing tasks such as 3D reconstruction, object tracking and augmented reality. In this work, we propose a novel constraints-based loss for measuring the intrinsic (focal length: $(f_x, f_y)$ and principal point: $(p_x, p_y)$) and extrinsic (baseline: ($b$), disparity: ($d$), translation: $(t_x, t_y, t_z)$, and rotation specifically pitch: $(\theta_p)$) camera parameters. Our novel constraints are based on geometric properties inherent in the camera model, including the anatomy of the projection matrix (vanishing points, image of world origin, axis planes) and the orthonormality of the rotation matrix. Thus we proposed a novel Unsupervised Geometric Constraint Loss (UGCL) via a multitask learning framework. Our methodology is a hybrid approach that employs the learning power of a neural network to estimate the desired parameters along with the underlying mathematical properties inherent in the camera projection matrix. This distinctive approach not only enhances the interpretability of the model but also facilitates a more informed learning process. Additionally, we introduce a new CVGL Camera Calibration dataset, featuring over 900 configurations of camera parameters, incorporating 63,600 image pairs that closely mirror real-world conditions. By training and testing on both synthetic and real-world datasets, our proposed approach demonstrates improvements across all parameters when compared to the state-of-the-art (SOTA) benchmarks. The code and the updated dataset can be found here: //github.com/CVLABLUMS/CVGL-Camera-Calibration
In autonomous driving, predicting the behavior (turning left, stopping, etc.) of target vehicles is crucial for the self-driving vehicle to make safe decisions and avoid accidents. Existing deep learning-based methods have shown excellent and accurate performance, but the black-box nature makes it untrustworthy to apply them in practical use. In this work, we explore the interpretability of behavior prediction of target vehicles by an Episodic Memory implanted Neural Decision Tree (abbrev. eMem-NDT). The structure of eMem-NDT is constructed by hierarchically clustering the text embedding of vehicle behavior descriptions. eMem-NDT is a neural-backed part of a pre-trained deep learning model by changing the soft-max layer of the deep model to eMem-NDT, for grouping and aligning the memory prototypes of the historical vehicle behavior features in training data on a neural decision tree. Each leaf node of eMem-NDT is modeled by a neural network for aligning the behavior memory prototypes. By eMem-NDT, we infer each instance in behavior prediction of vehicles by bottom-up Memory Prototype Matching (MPM) (searching the appropriate leaf node and the links to the root node) and top-down Leaf Link Aggregation (LLA) (obtaining the probability of future behaviors of vehicles for certain instances). We validate eMem-NDT on BLVD and LOKI datasets, and the results show that our model can obtain a superior performance to other methods with clear explainability. The code is available at //github.com/JWFangit/eMem-NDT.
Many existing obstacle avoidance algorithms overlook the crucial balance between safety and agility, especially in environments of varying complexity. In our study, we introduce an obstacle avoidance pipeline based on reinforcement learning. This pipeline enables drones to adapt their flying speed according to the environmental complexity. Moreover, to improve the obstacle avoidance performance in cluttered environments, we propose a novel latent space. The latent space in this representation is explicitly trained to retain memory of previous depth map observations. Our findings confirm that varying speed leads to a superior balance of success rate and agility in cluttered environments. Additionally, our memory-augmented latent representation outperforms the latent representation commonly used in reinforcement learning. Finally, after minimal fine-tuning, we successfully deployed our network on a real drone for enhanced obstacle avoidance.
The advent of generative artificial intelligence and the widespread adoption of it in society engendered intensive debates about its ethical implications and risks. These risks often differ from those associated with traditional discriminative machine learning. To synthesize the recent discourse and map its normative concepts, we conducted a scoping review on the ethics of generative artificial intelligence, including especially large language models and text-to-image models. Our analysis provides a taxonomy of 378 normative issues in 19 topic areas and ranks them according to their prevalence in the literature. The study offers a comprehensive overview for scholars, practitioners, or policymakers, condensing the ethical debates surrounding fairness, safety, harmful content, hallucinations, privacy, interaction risks, security, alignment, societal impacts, and others. We discuss the results, evaluate imbalances in the literature, and explore unsubstantiated risk scenarios.
The use of partially automated driving systems raises concerns about potential responsibility issues, posing risk to the system safety, acceptance, and adoption of these technologies. The concept of meaningful human control has emerged in response to the responsibility gap problem, requiring the fulfillment of two conditions, tracking and tracing. While this concept has provided important philosophical and design insights on automated driving systems, there is currently little knowledge on how meaningful human control relates to subjective experiences of actual users of these systems. To address this gap, our study aimed to investigate the alignment between the degree of meaningful human control and drivers' perceptions of safety and trust in a real-world partially automated driving system. We utilized previously collected data from interviews with Tesla "Full Self-Driving" (FSD) Beta users, investigating the alignment between the user perception and how well the system was tracking the users' reasons. We found that tracking of users' reasons for driving tasks (such as safe maneuvers) correlated with perceived safety and trust, albeit with notable exceptions. Surprisingly, failure to track lane changing and braking reasons was not necessarily associated with negative perceptions of safety. However, the failure of the system to track expected maneuvers in dangerous situations always resulted in low trust and perceived lack of safety. Overall, our analyses highlight alignment points but also possible discrepancies between perceived safety and trust on the one hand, and meaningful human control on the other hand. Our results can help the developers of automated driving technology to design systems under meaningful human control and are perceived as safe and trustworthy.