This paper describes a novel design of a neural network-based speech generation model for learning prosodic representation.The problem of representation learning is formulated according to the information bottleneck (IB) principle. A modified VQ-VAE quantized layer is incorporated in the speech generation model to control the IB capacity and adjust the balance between reconstruction power and disentangle capability of the learned representation. The proposed model is able to learn word-level prosodic representations from speech data. With an optimized IB capacity, the learned representations not only are adequate to reconstruct the original speech but also can be used to transfer the prosody onto different textual content. Extensive results of the objective and subjective evaluation are presented to demonstrate the effect of IB capacity control, the effectiveness, and potential usage of the learned prosodic representation in controllable neural speech generation.
Are end-to-end text-to-speech (TTS) models over-parametrized? To what extent can these models be pruned, and what happens to their synthesis capabilities? This work serves as a starting point to explore pruning both spectrogram prediction networks and vocoders. We thoroughly investigate the tradeoffs between sparstiy and its subsequent effects on synthetic speech. Additionally, we explored several aspects of TTS pruning: amount of finetuning data versus sparsity, TTS-Augmentation to utilize unspoken text, and combining knowledge distillation and pruning. Our findings suggest that not only are end-to-end TTS models highly prunable, but also, perhaps surprisingly, pruned TTS models can produce synthetic speech with equal or higher naturalness and intelligibility, with similar prosody. All of our experiments are conducted on publicly available models, and findings in this work are backed by large-scale subjective tests and objective measures. Code and 200 pruned models are made available to facilitate future research on efficiency in TTS.
Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.
In this paper, we propose a unified pre-training approach called UniSpeech to learn speech representations with both unlabeled and labeled data, in which supervised phonetic CTC learning and phonetically-aware contrastive self-supervised learning are conducted in a multi-task learning manner. The resultant representations can capture information more correlated with phonetic structures and improve the generalization across languages and domains. We evaluate the effectiveness of UniSpeech for cross-lingual representation learning on public CommonVoice corpus. The results show that UniSpeech outperforms self-supervised pretraining and supervised transfer learning for speech recognition by a maximum of 13.4% and 17.8% relative phone error rate reductions respectively (averaged over all testing languages). The transferability of UniSpeech is also demonstrated on a domain-shift speech recognition task, i.e., a relative word error rate reduction of 6% against the previous approach.
The information bottleneck (IB) method is a technique for extracting information that is relevant for predicting the target random variable from the source random variable, which is typically implemented by optimizing the IB Lagrangian that balances the compression and prediction terms. However, the IB Lagrangian is hard to optimize, and multiple trials for tuning values of Lagrangian multiplier are required. Moreover, we show that the prediction performance strictly decreases as the compression gets stronger during optimizing the IB Lagrangian. In this paper, we implement the IB method from the perspective of supervised disentangling. Specifically, we introduce Disentangled Information Bottleneck (DisenIB) that is consistent on compressing source maximally without target prediction performance loss (maximum compression). Theoretical and experimental results demonstrate that our method is consistent on maximum compression, and performs well in terms of generalization, robustness to adversarial attack, out-of-distribution detection, and supervised disentangling.
We address the question of characterizing and finding optimal representations for supervised learning. Traditionally, this question has been tackled using the Information Bottleneck, which compresses the inputs while retaining information about the targets, in a decoder-agnostic fashion. In machine learning, however, our goal is not compression but rather generalization, which is intimately linked to the predictive family or decoder of interest (e.g. linear classifier). We propose the Decodable Information Bottleneck (DIB) that considers information retention and compression from the perspective of the desired predictive family. As a result, DIB gives rise to representations that are optimal in terms of expected test performance and can be estimated with guarantees. Empirically, we show that the framework can be used to enforce a small generalization gap on downstream classifiers and to predict the generalization ability of neural networks.
Pre-training text representations has recently been shown to significantly improve the state-of-the-art in many natural language processing tasks. The central goal of pre-training is to learn text representations that are useful for subsequent tasks. However, existing approaches are optimized by minimizing a proxy objective, such as the negative log likelihood of language modeling. In this work, we introduce a learning algorithm which directly optimizes model's ability to learn text representations for effective learning of downstream tasks. We show that there is an intrinsic connection between multi-task pre-training and model-agnostic meta-learning with a sequence of meta-train steps. The standard multi-task learning objective adopted in BERT is a special case of our learning algorithm where the depth of meta-train is zero. We study the problem in two settings: unsupervised pre-training and supervised pre-training with different pre-training objects to verify the generality of our approach.Experimental results show that our algorithm brings improvements and learns better initializations for a variety of downstream tasks.
In English, prosody adds a broad range of information to segment sequences, from information structure (e.g. contrast) to stylistic variation (e.g. expression of emotion). However, when learning to control prosody in text-to-speech voices, it is not clear what exactly the control is modifying. Existing research on discrete representation learning for prosody has demonstrated high naturalness, but no analysis has been performed on what these representations capture, or if they can generate meaningfully-distinct variants of an utterance. We present a phrase-level variational autoencoder with a multi-modal prior, using the mode centres as "intonation codes". Our evaluation establishes which intonation codes are perceptually distinct, finding that the intonation codes from our multi-modal latent model were significantly more distinct than a baseline using k-means clustering. We carry out a follow-up qualitative study to determine what information the codes are carrying. Most commonly, listeners commented on the intonation codes having a statement or question style. However, many other affect-related styles were also reported, including: emotional, uncertain, surprised, sarcastic, passive aggressive, and upset.
Deep learning has revolutionized speech recognition, image recognition, and natural language processing since 2010, each involving a single modality in the input signal. However, many applications in artificial intelligence involve more than one modality. It is therefore of broad interest to study the more difficult and complex problem of modeling and learning across multiple modalities. In this paper, a technical review of the models and learning methods for multimodal intelligence is provided. The main focus is the combination of vision and natural language, which has become an important area in both computer vision and natural language processing research communities. This review provides a comprehensive analysis of recent work on multimodal deep learning from three new angles - learning multimodal representations, the fusion of multimodal signals at various levels, and multimodal applications. On multimodal representation learning, we review the key concept of embedding, which unifies the multimodal signals into the same vector space and thus enables cross-modality signal processing. We also review the properties of the many types of embedding constructed and learned for general downstream tasks. On multimodal fusion, this review focuses on special architectures for the integration of the representation of unimodal signals for a particular task. On applications, selected areas of a broad interest in current literature are covered, including caption generation, text-to-image generation, and visual question answering. We believe this review can facilitate future studies in the emerging field of multimodal intelligence for the community.
In this paper, we introduce the Variational Autoencoder (VAE) to an end-to-end speech synthesis model, to learn the latent representation of speaking styles in an unsupervised manner. The style representation learned through VAE shows good properties such as disentangling, scaling, and combination, which makes it easy for style control. Style transfer can be achieved in this framework by first inferring style representation through the recognition network of VAE, then feeding it into TTS network to guide the style in synthesizing speech. To avoid Kullback-Leibler (KL) divergence collapse in training, several techniques are adopted. Finally, the proposed model shows good performance of style control and outperforms Global Style Token (GST) model in ABX preference tests on style transfer.
Sentence representation models trained only on language could potentially suffer from the grounding problem. Recent work has shown promising results in improving the qualities of sentence representations by jointly training them with associated image features. However, the grounding capability is limited due to distant connection between input sentences and image features by the design of the architecture. In order to further close the gap, we propose applying self-attention mechanism to the sentence encoder to deepen the grounding effect. Our results on transfer tasks show that self-attentive encoders are better for visual grounding, as they exploit specific words with strong visual associations.