亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces a novel approach Counterfactual Shapley Values (CSV), which enhances explainability in reinforcement learning (RL) by integrating counterfactual analysis with Shapley Values. The approach aims to quantify and compare the contributions of different state dimensions to various action choices. To more accurately analyze these impacts, we introduce new characteristic value functions, the ``Counterfactual Difference Characteristic Value" and the ``Average Counterfactual Difference Characteristic Value." These functions help calculate the Shapley values to evaluate the differences in contributions between optimal and non-optimal actions. Experiments across several RL domains, such as GridWorld, FrozenLake, and Taxi, demonstrate the effectiveness of the CSV method. The results show that this method not only improves transparency in complex RL systems but also quantifies the differences across various decisions.

相關內容

In this paper, we present Ray-shooting Quickhull, which is a simple, randomized, outputsensitive version of the Quickhull algorithm for constructing the convex hull of a set of n points in the plane. We show that the randomized Ray-shooting Quickhull algorithm runs in O(n log h) expected time, where h is the number of points on the boundary of the convex hull. Keeping with the spirit of the original Quickhull algorithm, our algorithm is quite simple and is, in fact, closer in spirit to the well-known randomized Quicksort algorithm. Unlike the original Quickhull algorithm, however, which can run in ${\Theta}(n^2) time$ for some input distributions, the expected performance bounds for the randomized Ray-shooting Quickhull algorithm match or improve the performance bounds of more complicated algorithms. Importantly, the expectation in our output-sensitive performance bound does not depend on assumptions about the distribution of input points. Still, we show that, like the deterministic Quickhull algorithm, our randomized Ray-shooting Quickhull algorithm runs in O(n) expected time for n points chosen uniformly at random from a bounded convex region. We also provide experimental evidence that the randomized Ray-shooting Quickhull algorithm is on par or faster than deterministic Quickhull in practice, depending on the input distribution.

This paper introduces Hamster, a novel synchronous Byzantine Fault Tolerance protocol that achieves better performance and has weaker dependency on synchrony. Specifically, Hamster employs coding techniques to significantly decrease communication complexity and addresses coding related security issues. Consequently, Hamster achieves a throughput gain that increases linearly with the number of nodes, compared to Sync HotStuff. By adjusting the block size, Hamster outperforms Sync HotStuff in terms of both throughput and latency. Moreover, With minor modifications, Hamster can also function effectively in mobile sluggish environments, further reducing its dependency on strict synchrony. We implement Hamster and the experimental results demonstrate its performance advantages. Specifically, Hamster's throughput in a network of $9$ nodes is $2.5\times$ that of Sync HotStuff, and this gain increases to $10$ as the network scales to $65$ nodes.

We propose the Multi-Head Density Adaptive Attention Mechanism (DAAM), a novel probabilistic attention framework that can be used for Parameter-Efficient Fine-tuning (PEFT), and the Density Adaptive Transformer (DAT), designed to enhance information aggregation across multiple modalities, including Speech, Text, and Vision. DAAM integrates learnable mean and variance into its attention mechanism, implemented in a multi-head framework, enabling it to collectively model any probability distribution for dynamic recalibration of feature significance. This method demonstrates significant improvements, especially with highly non-stationary data, surpassing the state-of-the-art attention techniques in model performance, up to approximately +20% (abs.) in accuracy. Empirically, DAAM exhibits superior adaptability and efficacy across a diverse range of tasks, including emotion recognition in speech, image classification, and text classification, thereby establishing its robustness and versatility in handling data across multiple modalities. Furthermore, we introduce the Importance Factor, a new learning-based metric that enhances the explainability of models trained with DAAM-based methods.

Machine learning and AI have been recently embraced by many companies. Machine Learning Operations, (MLOps), refers to the use of continuous software engineering processes, such as DevOps, in the deployment of machine learning models to production. Nevertheless, not all machine learning initiatives successfully transition to the production stage owing to the multitude of intricate factors involved. This article discusses the issues that exist in several components of the MLOps pipeline, namely the data manipulation pipeline, model building pipeline, and deployment pipeline. A systematic mapping study is performed to identify the challenges that arise in the MLOps system categorized by different focus areas. Using this data, realistic and applicable recommendations are offered for tools or solutions that can be used for their implementation. The main value of this work is it maps distinctive challenges in MLOps along with the recommended solutions outlined in our study. These guidelines are not specific to any particular tool and are applicable to both research and industrial settings.

This paper introduces a new approach to using Large Language Models (LLMs) for classification tasks, which are typically handled using Machine Learning (ML) models. Unlike ML models that rely heavily on data cleaning and feature engineering, this method streamlines the process using LLMs. This paper proposes a new concept called "Language Model Learning (LML)" powered by a new method called "Data-Augmented Prediction (DAP)". The classification is performed by LLMs using a method similar to humans manually exploring and understanding the data and deciding classifications using data as a reference. Training data is summarized and evaluated to determine the features that lead to the classification of each label the most. In the process of DAP, the system uses the data summary to automatically create a query, which is used to retrieve relevant rows from the dataset. A classification is generated by the LLM using data summary and relevant rows, ensuring satisfactory accuracy even with complex data. Usage of data summary and similar data in DAP ensures context-aware decision-making. The proposed method uses the words "Act as an Explainable Machine Learning Model" in the prompt to enhance the interpretability of the predictions by allowing users to review the logic behind each prediction. In some test cases, the system scored an accuracy above 90%, proving the effectiveness of the system and its potential to outperform conventional ML models in various scenarios. The code is available at //github.com/Pro-GenAI/LML-DAP

This paper introduces a speech enhancement solution tailored for true wireless stereo (TWS) earbuds on-device usage. The solution was specifically designed to support conversations in noisy environments, with active noise cancellation (ANC) activated. The primary challenges for speech enhancement models in this context arise from computational complexity that limits on-device usage and latency that must be less than 3 ms to preserve a live conversation. To address these issues, we evaluated several crucial design elements, including the network architecture and domain, design of loss functions, pruning method, and hardware-specific optimization. Consequently, we demonstrated substantial improvements in speech enhancement quality compared with that in baseline models, while simultaneously reducing the computational complexity and algorithmic latency.

This paper introduces a novel framework designed to achieve a high compression ratio in Split Learning (SL) scenarios where resource-constrained devices are involved in large-scale model training. Our investigations demonstrate that compressing feature maps within SL leads to biased gradients that can negatively impact the convergence rates and diminish the generalization capabilities of the resulting models. Our theoretical analysis provides insights into how compression errors critically hinder SL performance, which previous methodologies underestimate. To address these challenges, we employ a narrow bit-width encoded mask to compensate for the sparsification error without increasing the order of time complexity. Supported by rigorous theoretical analysis, our framework significantly reduces compression errors and accelerates the convergence. Extensive experiments also verify that our method outperforms existing solutions regarding training efficiency and communication complexity.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{//github.com/RuochenFan/S4Net}.

Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.

北京阿比特科技有限公司