亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The semi-random graph process is a single player game in which the player is initially presented an empty graph on $n$ vertices. In each round, a vertex $u$ is presented to the player independently and uniformly at random. The player then adaptively selects a vertex $v$, and adds the edge $uv$ to the graph. For a fixed monotone graph property, the objective of the player is to force the graph to satisfy this property with high probability in as few rounds as possible. In this paper, we investigate the following three properties: containing a complete graph of order $k$, having the chromatic number at least $k$, and not having an independent set of size at least $k$.

相關內容

In this paper we consider the zeros of the chromatic polynomial of series-parallel graphs. Complementing a result of Sokal, showing density outside the disk $|q-1|\leq1$, we show density of these zeros in the half plane $\Re(q)>3/2$ and we show there exists an open region $U$ containing the interval $(0,32/27)$ such that $U\setminus\{1\}$ does not contain zeros of the chromatic polynomial of series-parallel graphs. We also disprove a conjecture of Sokal by showing that for each large enough integer $\Delta$ there exists a series-parallel graph for which all vertices but one have degree at most $\Delta$ and whose chromatic polynomial has a zero with real part exceeding $\Delta$.

When a problem has more than one solution, it is often important, depending on the underlying context, to enumerate (i.e., to list) them all. Even when the enumeration can be done in polynomial delay, that is, spending no more than polynomial time to go from one solution to the next, this can be costly as the number of solutions themselves may be huge, including sometimes exponential. Furthermore, depending on the application, many of these solutions can be considered equivalent. The problem of an efficient enumeration of the equivalence classes or of one representative per class (without generating all the solutions), although identified as a need in many areas, has been addressed only for very few specific cases. In this paper, we provide a general framework that solves this problem in polynomial delay for a wide variety of contexts, including optimization ones that can be addressed by dynamic programming algorithms, and for certain types of equivalence relations between solutions.

Under some regularity assumptions, we report an a priori error analysis of a dG scheme for the Poisson and Stokes flow problem in their dual mixed formulation. Both formulations satisfy a Babu\v{s}ka-Brezzi type condition within the space H(div) x L2. It is well known that the lowest order Crouzeix-Raviart element paired with piecewise constants satisfies such a condition on (broken) H1 x L2 spaces. In the present article, we use this pair. The continuity of the normal component is weakly imposed by penalizing jumps of the broken H(div) component. For the resulting methods, we prove well-posedness and convergence with constants independent of data and mesh size. We report error estimates in the methods natural norms and optimal local error estimates for the divergence error. In fact, our finite element solution shares for each triangle one DOF with the CR interpolant and the divergence is locally the best-approximation for any regularity. Numerical experiments support the findings and suggest that the other errors converge optimally even for the lowest regularity solutions and a crack-problem, as long as the crack is resolved by the mesh.

A Low-rank Spectral Optimization Problem (LSOP) minimizes a linear objective subject to multiple two-sided linear matrix inequalities intersected with a low-rank and spectral constrained domain set. Although solving LSOP is, in general, NP-hard, its partial convexification (i.e., replacing the domain set by its convex hull) termed "LSOP-R," is often tractable and yields a high-quality solution. This motivates us to study the strength of LSOP-R. Specifically, we derive rank bounds for any extreme point of the feasible set of LSOP-R and prove their tightness for the domain sets with different matrix spaces. The proposed rank bounds recover two well-known results in the literature from a fresh angle and also allow us to derive sufficient conditions under which the relaxation LSOP-R is equivalent to the original LSOP. To effectively solve LSOP-R, we develop a column generation algorithm with a vector-based convex pricing oracle, coupled with a rank-reduction algorithm, which ensures the output solution satisfies the theoretical rank bound. Finally, we numerically verify the strength of the LSOP-R and the efficacy of the proposed algorithms.

A set $S\subseteq V$ of vertices of a graph $G$ is a \emph{$c$-clustered set} if it induces a subgraph with components of order at most $c$ each, and $\alpha_c(G)$ denotes the size of a largest $c$-clustered set. For any graph $G$ on $n$ vertices and treewidth $k$, we show that $\alpha_c(G) \geq \frac{c}{c+k+1}n$, which improves a result of Wood [arXiv:2208.10074, August 2022], while we construct $n$-vertex graphs $G$ of treewidth~$k$ with $\alpha_c(G)\leq \frac{c}{c+k}n$. In the case $c\leq 2$ or $k=1$ we prove the better lower bound $\alpha_c(G) \geq \frac{c}{c+k}n$, which settles a conjecture of Chappell and Pelsmajer [Electron.\ J.\ Comb., 2013] and is best-possible. Finally, in the case $c=3$ and $k=2$, we show $\alpha_c(G) \geq \frac{5}{9}n$ and which is best-possible.

This paper is concerned with the multi-frequency factorization method for imaging the support of a wave-number-dependent source function. It is supposed that the source function is given by the Fourier transform of some time-dependent source with a priori given radiating period. Using the multi-frequency far-field data at a fixed observation direction, we provide a computational criterion for characterizing the smallest strip containing the support and perpendicular to the observation direction. The far-field data from sparse observation directions can be used to recover a $\Theta$-convex polygon of the support. The inversion algorithm is proven valid even with multi-frequency near-field data in three dimensions. The connections to time-dependent inverse source problems are discussed in the near-field case. We also comment on possible extensions to source functions with two disconnected supports. Numerical tests in both two and three dimensions are implemented to show effectiveness and feasibility of the approach. This paper provides numerical analysis for a frequency-domain approach to recover the support of an admissible class of time-dependent sources.

The {\em binary deletion channel} with deletion probability $d$ ($\text{BDC}_d$) is a random channel that deletes each bit of the input message i.i.d with probability $d$. It has been studied extensively as a canonical example of a channel with synchronization errors. Perhaps the most important question regarding the BDC is determining its capacity. Mitzenmacher and Drinea (ITIT 2006) and Kirsch and Drinea (ITIT 2009) show a method by which distributions on run lengths can be converted to codes for the BDC, yielding a lower bound of $\mathcal{C}(\text{BDC}_d) > 0.1185 \cdot (1-d)$. Fertonani and Duman (ITIT 2010), Dalai (ISIT 2011) and Rahmati and Duman (ITIT 2014) use computer aided analyses based on the Blahut-Arimoto algorithm to prove an upper bound of $\mathcal{C}(\text{BDC}_d) < 0.4143\cdot(1-d)$ in the high deletion probability regime ($d > 0.65$). In this paper, we show that the Blahut-Arimoto algorithm can be implemented with a lower space complexity, allowing us to extend the upper bound analyses, and prove an upper bound of $\mathcal{C}(\text{BDC}_d) < 0.3745 \cdot(1-d)$ for all $d \geq 0.68$. Furthermore, we show that an extension of the Blahut-Arimoto algorithm can also be used to select better run length distributions for Mitzenmacher and Drinea's construction, yielding a lower bound of $\mathcal{C}(\text{BDC}_d) > 0.1221 \cdot (1 - d)$.

An integer vector $b \in \mathbb{Z}^d$ is a degree sequence if there exists a hypergraph with vertices $\{1,\dots,d\}$ such that each $b_i$ is the number of hyperedges containing $i$. The degree-sequence polytope $\mathscr{Z}^d$ is the convex hull of all degree sequences. We show that all but a $2^{-\Omega(d)}$ fraction of integer vectors in the degree sequence polytope are degree sequences. Furthermore, the corresponding hypergraph of these points can be computed in time $2^{O(d)}$ via linear programming techniques. This is substantially faster than the $2^{O(d^2)}$ running time of the current-best algorithm for the degree-sequence problem. We also show that for $d\geq 98$, the degree-sequence polytope $\mathscr{Z}^d$ contains integer points that are not degree sequences. Furthermore, we prove that the linear optimization problem over $\mathscr{Z}^d$ is $\mathrm{NP}$-hard. This complements a recent result of Deza et al. (2018) who provide an algorithm that is polynomial in $d$ and the number of hyperedges.

Let $G$ be a graph on $n$ vertices of maximum degree $\Delta$. We show that, for any $\delta > 0$, the down-up walk on independent sets of size $k \leq (1-\delta)\alpha_c(\Delta)n$ mixes in time $O_{\Delta,\delta}(k\log{n})$, thereby resolving a conjecture of Davies and Perkins in an optimal form. Here, $\alpha_{c}(\Delta)n$ is the NP-hardness threshold for the problem of counting independent sets of a given size in a graph on $n$ vertices of maximum degree $\Delta$. Our mixing time has optimal dependence on $k,n$ for the entire range of $k$; previously, even polynomial mixing was not known. In fact, for $k = \Omega_{\Delta}(n)$ in this range, we establish a log-Sobolev inequality with optimal constant $\Omega_{\Delta,\delta}(1/n)$. At the heart of our proof are three new ingredients, which may be of independent interest. The first is a method for lifting $\ell_\infty$-independence from a suitable distribution on the discrete cube -- in this case, the hard-core model -- to the slice by proving stability of an Edgeworth expansion using a multivariate zero-free region for the base distribution. The second is a generalization of the Lee-Yau induction to prove log-Sobolev inequalities for distributions on the slice with considerably less symmetry than the uniform distribution. The third is a sharp decomposition-type result which provides a lossless comparison between the Dirichlet form of the original Markov chain and that of the so-called projected chain in the presence of a contractive coupling.

Minimum flow decomposition (MFD) is the NP-hard problem of finding a smallest decomposition of a network flow/circulation $X$ on a directed graph $G$ into weighted source-to-sink paths whose superposition equals $X$. We show that, for acyclic graphs, considering the \emph{width} of the graph (the minimum number of paths needed to cover all of its edges) yields advances in our understanding of its approximability. For the version of the problem that uses only non-negative weights, we identify and characterise a new class of \emph{width-stable} graphs, for which a popular heuristic is a \gwsimple-approximation ($|X|$ being the total flow of $X$), and strengthen its worst-case approximation ratio from $\Omega(\sqrt{m})$ to $\Omega(m / \log m)$ for sparse graphs, where $m$ is the number of edges in the graph. We also study a new problem on graphs with cycles, Minimum Cost Circulation Decomposition (MCCD), and show that it generalises MFD through a simple reduction. For the version allowing also negative weights, we give a $(\lceil \log \Vert X \Vert \rceil +1)$-approximation ($\Vert X \Vert$ being the maximum absolute value of $X$ on any edge) using a power-of-two approach, combined with parity fixing arguments and a decomposition of unitary circulations ($\Vert X \Vert \leq 1$), using a generalised notion of width for this problem. Finally, we disprove a conjecture about the linear independence of minimum (non-negative) flow decompositions posed by Kloster et al. [ALENEX 2018], but show that its useful implication (polynomial-time assignments of weights to a given set of paths to decompose a flow) holds for the negative version.

北京阿比特科技有限公司