亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Adjoint operators have been found to be effective in the exploration of CNN's inner workings [1]. However, the previous no-bias assumption restricted its generalization. We overcome the restriction via embedding input images into an extended normed space that includes bias in all CNN layers as part of the extended space and propose an adjoint-operator-based algorithm that maps high-level weights back to the extended input space for reconstructing an effective hypersurface. Such hypersurface can be computed for an arbitrary unit in the CNN, and we prove that this reconstructed hypersurface, when multiplied by the original input (through an inner product), will precisely replicate the output value of each unit. We show experimental results based on the CIFAR-10 and CIFAR-100 data sets where the proposed approach achieves near 0 activation value reconstruction error.

相關內容

CoT (Chain-of-Thought) is a way to solve reasoning problems for LLMs . Recently, many researches appear for improving the CoT capability of LLMs. In this work, we also proposed Olapa-MCoT, which is a LLMs based on llama2-13B PLM for finetuning and alignment learning. During the alignment training, we proposed the SimRRHF algorithm and Incorrect Data Relearning and mainly focused on optimizing the Chinese mathematical reasoning ability of Olapa-MCoT. The experiment achieved significant results, with the accuracy of Chinese mathematical reasoning up to 50%, 36% rise compared to llama2-13B. In addition, the accuracy of English reasoning ability also increased by nearly 4%.

Multi-view compression technology, especially Stereo Image Compression (SIC), plays a crucial role in car-mounted cameras and 3D-related applications. Interestingly, the Distributed Source Coding (DSC) theory suggests that efficient data compression of correlated sources can be achieved through independent encoding and joint decoding. This motivates the rapidly developed deep-distributed SIC methods in recent years. However, these approaches neglect the unique characteristics of stereo-imaging tasks and incur high decoding latency. To address this limitation, we propose a Feature-based Fast Cascade Alignment network (FFCA-Net) to fully leverage the side information on the decoder. FFCA adopts a coarse-to-fine cascaded alignment approach. In the initial stage, FFCA utilizes a feature domain patch-matching module based on stereo priors. This module reduces redundancy in the search space of trivial matching methods and further mitigates the introduction of noise. In the subsequent stage, we utilize an hourglass-based sparse stereo refinement network to further align inter-image features with a reduced computational cost. Furthermore, we have devised a lightweight yet high-performance feature fusion network, called a Fast Feature Fusion network (FFF), to decode the aligned features. Experimental results on InStereo2K, KITTI, and Cityscapes datasets demonstrate the significant superiority of our approach over traditional and learning-based SIC methods. In particular, our approach achieves significant gains in terms of 3 to 10-fold faster decoding speed than other methods.

Multi-agent collaboration with Large Language Models (LLMs) demonstrates proficiency in basic tasks, yet its efficiency in more complex scenarios remains unexplored. In gaming environments, these agents often face situations without established coordination protocols, requiring them to make intelligent inferences about teammates from limited data. This problem motivates the area of ad hoc teamwork, in which an agent may potentially cooperate with a variety of teammates to achieve a shared goal. Our study focuses on the ad hoc teamwork problem where the agent operates in an environment driven by natural language. Our findings reveal the potential of LLM agents in team collaboration, highlighting issues related to hallucinations in communication. To address this issue, we develop CodeAct, a general agent that equips LLM with enhanced memory and code-driven reasoning, enabling the repurposing of partial information for rapid adaptation to new teammates.

Sequential Recommender Systems (SRSs) are widely employed to model user behavior over time. However, their robustness in the face of perturbations in training data remains a largely understudied yet critical issue. A fundamental challenge emerges in previous studies aimed at assessing the robustness of SRSs: the Rank-Biased Overlap (RBO) similarity is not particularly suited for this task as it is designed for infinite rankings of items and thus shows limitations in real-world scenarios. For instance, it fails to achieve a perfect score of 1 for two identical finite-length rankings. To address this challenge, we introduce a novel contribution: Finite Rank-Biased Overlap (FRBO), an enhanced similarity tailored explicitly for finite rankings. This innovation facilitates a more intuitive evaluation in practical settings. In pursuit of our goal, we empirically investigate the impact of removing items at different positions within a temporally ordered sequence. We evaluate two distinct SRS models across multiple datasets, measuring their performance using metrics such as Normalized Discounted Cumulative Gain (NDCG) and Rank List Sensitivity. Our results demonstrate that removing items at the end of the sequence has a statistically significant impact on performance, with NDCG decreasing up to 60%. Conversely, removing items from the beginning or middle has no significant effect. These findings underscore the criticality of the position of perturbed items in the training data. As we spotlight the vulnerabilities inherent in current SRSs, we fervently advocate for intensified research efforts to fortify their robustness against adversarial perturbations.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司