亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a new method for combining (or aggregating or ensembling) multivariate probabilistic forecasts, considering dependencies between quantiles and marginals through a smoothing procedure that allows for online learning. We discuss two smoothing methods: dimensionality reduction using Basis matrices and penalized smoothing. The new online learning algorithm generalizes the standard CRPS learning framework into multivariate dimensions. It is based on Bernstein Online Aggregation (BOA) and yields optimal asymptotic learning properties. The procedure uses horizontal aggregation, i.e., aggregation across quantiles. We provide an in-depth discussion on possible extensions of the algorithm and several nested cases related to the existing literature on online forecast combination. We apply the proposed methodology to forecasting day-ahead electricity prices, which are 24-dimensional distributional forecasts. The proposed method yields significant improvements over uniform combination in terms of continuous ranked probability score (CRPS). We discuss the temporal evolution of the weights and hyperparameters and present the results of reduced versions of the preferred model. A fast C++ implementation of the proposed algorithm will be made available in connection with this paper as an open-source R-Package on CRAN.

相關內容

Worked examples (solutions to typical programming problems presented as a source code in a certain language and are used to explain the topics from a programming class) are among the most popular types of learning content in programming classes. Most approaches and tools for presenting these examples to students are based on line-by-line explanations of the example code. However, instructors rarely have time to provide line-by-line explanations for a large number of examples typically used in a programming class. In this paper, we explore and assess a human-AI collaboration approach to authoring worked examples for Java programming. We introduce an authoring system for creating Java worked examples that generates a starting version of code explanations and presents it to the instructor to edit if necessary. We also present a study that assesses the quality of explanations created with this approach.

This tutorial focuses on efficient methods to predictive monitoring (PM), the problem of detecting at runtime future violations of a given requirement from the current state of a system. While performing model checking at runtime would offer a precise solution to the PM problem, it is generally computationally expensive. To address this scalability issue, several lightweight approaches based on machine learning have recently been proposed. These approaches work by learning an approximate yet efficient surrogate (deep learning) model of the expensive model checker. A key challenge remains to ensure reliable predictions, especially in safety-critical applications. We review our recent work on predictive monitoring, one of the first to propose learning-based approximations for CPS verification of temporal logic specifications and the first in this context to apply conformal prediction (CP) for rigorous uncertainty quantification. These CP-based uncertainty estimators offer statistical guarantees regarding the generalization error of the learning model, and they can be used to determine unreliable predictions that should be rejected. In this tutorial, we present a general and comprehensive framework summarizing our approach to the predictive monitoring of CPSs, examining in detail several variants determined by three main dimensions: system dynamics (deterministic, non-deterministic, stochastic), state observability, and semantics of requirements' satisfaction (Boolean or quantitative).

This paper proposes a weakly-supervised machine learning-based approach aiming at a tool to alert patients about possible respiratory diseases. Various types of pathologies may affect the respiratory system, potentially leading to severe diseases and, in certain cases, death. In general, effective prevention practices are considered as major actors towards the improvement of the patient's health condition. The proposed method strives to realize an easily accessible tool for the automatic diagnosis of respiratory diseases. Specifically, the method leverages Variational Autoencoder architectures permitting the usage of training pipelines of limited complexity and relatively small-sized datasets. Importantly, it offers an accuracy of 57 %, which is in line with the existing strongly-supervised approaches.

We propose and demonstrate a compositional framework for training and verifying reinforcement learning (RL) systems within a multifidelity sim-to-real pipeline, in order to deploy reliable and adaptable RL policies on physical hardware. By decomposing complex robotic tasks into component subtasks and defining mathematical interfaces between them, the framework allows for the independent training and testing of the corresponding subtask policies, while simultaneously providing guarantees on the overall behavior that results from their composition. By verifying the performance of these subtask policies using a multifidelity simulation pipeline, the framework not only allows for efficient RL training, but also for a refinement of the subtasks and their interfaces in response to challenges arising from discrepancies between simulation and reality. In an experimental case study we apply the framework to train and deploy a compositional RL system that successfully pilots a Warthog unmanned ground robot.

This paper proposes a simple but highly efficient expansion-based model for continual learning. The recent feature transformation, masking and factorization-based methods are efficient, but they grow the model only over the global or shared parameter. Therefore, these approaches do not fully utilize the previously learned information because the same task-specific parameter forgets the earlier knowledge. Thus, these approaches show limited transfer learning ability. Moreover, most of these models have constant parameter growth for all tasks, irrespective of the task complexity. Our work proposes a simple filter and channel expansion based method that grows the model over the previous task parameters and not just over the global parameter. Therefore, it fully utilizes all the previously learned information without forgetting, which results in better knowledge transfer. The growth rate in our proposed model is a function of task complexity; therefore for a simple task, the model has a smaller parameter growth while for complex tasks, the model requires more parameters to adapt to the current task. Recent expansion based models show promising results for task incremental learning (TIL). However, for class incremental learning (CIL), prediction of task id is a crucial challenge; hence, their results degrade rapidly as the number of tasks increase. In this work, we propose a robust task prediction method that leverages entropy weighted data augmentations and the models gradient using pseudo labels. We evaluate our model on various datasets and architectures in the TIL, CIL and generative continual learning settings. The proposed approach shows state-of-the-art results in all these settings. Our extensive ablation studies show the efficacy of the proposed components.

This paper presents a tutorial overview of path integral (PI) control approaches for stochastic optimal control and trajectory optimization. We concisely summarize the theoretical development of path integral control to compute a solution for stochastic optimal control and provide algorithmic descriptions of the cross-entropy (CE) method, an open-loop controller using the receding horizon scheme known as the model predictive path integral (MPPI), and a parameterized state feedback controller based on the path integral control theory. We discuss policy search methods based on path integral control, efficient and stable sampling strategies, extensions to multi-agent decision-making, and MPPI for the trajectory optimization on manifolds. For tutorial demonstrations, some PI-based controllers are implemented in Python, MATLAB and ROS2/Gazebo simulations for trajectory optimization. The simulation frameworks and source codes are publicly available at //github.com/INHA-Autonomous-Systems-Laboratory-ASL/An-Overview-on-Recent-Advances-in-Path-Integral-Control.

A major concern in using deep learning based generative models for document-grounded dialogs is the potential generation of responses that are not \textit{faithful} to the underlying document. Existing automated metrics used for evaluating the faithfulness of response with respect to the grounding document measure the degree of similarity between the generated response and the document's content. However, these automated metrics are far from being well aligned with human judgments. Therefore, to improve the measurement of faithfulness, we propose a new metric that utilizes (Conditional) Point-wise Mutual Information (PMI) between the generated response and the source document, conditioned on the dialogue. PMI quantifies the extent to which the document influences the generated response -- with a higher PMI indicating a more faithful response. We build upon this idea to create a new decoding technique that incorporates PMI into the response generation process to predict more faithful responses. Our experiments on the BEGIN benchmark demonstrate an improved correlation of our metric with human evaluation. We also show that our decoding technique is effective in generating more faithful responses when compared to standard decoding techniques on a set of publicly available document-grounded dialog datasets.

Large language models (LLMs) provide excellent text-generation capabilities, but standard prompting and generation methods generally do not lead to intentional or goal-directed agents and might necessitate considerable prompt tuning. This becomes particularly apparent in multi-turn conversations: even the best current LLMs rarely ask clarifying questions, engage in explicit information gathering, or take actions now that lead to better decisions after multiple turns. Reinforcement learning has the potential to leverage the powerful modeling capabilities of LLMs, as well as their internal representation of textual interactions, to create capable goal-directed language agents. This can enable intentional and temporally extended interactions, such as with humans, through coordinated persuasion and carefully crafted questions, or in goal-directed play through text games to bring about desired final outcomes. However, enabling this requires the community to develop stable and reliable reinforcement learning algorithms that can effectively train LLMs. Developing such algorithms requires tasks that can gauge progress on algorithm design, provide accessible and reproducible evaluations for multi-turn interactions, and cover a range of task properties and challenges in improving reinforcement learning algorithms. Our paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for LLMs, together with an open-source research framework containing a basic toolkit for getting started on multi-turn RL with offline value-based and policy-based RL methods. Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司