亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we developed the solution of roadside LiDAR object detection using a combination of two unsupervised learning algorithms. The 3D point clouds are firstly converted into spherical coordinates and filled into the elevation-azimuth matrix using a hash function. After that, the raw LiDAR data were rearranged into new data structures to store the information of range, azimuth, and intensity. Then, the Dynamic Mode Decomposition method is applied to decompose the LiDAR data into low-rank backgrounds and sparse foregrounds based on intensity channel pattern recognition. The Coarse Fine Triangle Algorithm (CFTA) automatically finds the dividing value to separate the moving targets from static background according to range information. After intensity and range background subtraction, the foreground moving objects will be detected using a density-based detector and encoded into the state-space model for tracking. The output of the proposed solution includes vehicle trajectories that can enable many mobility and safety applications. The method was validated at both path and point levels and outperformed the state-of-the-art. In contrast to the previous methods that process directly on the scattered and discrete point clouds, the dynamic classification method can establish the less sophisticated linear relationship of the 3D measurement data, which captures the spatial-temporal structure that we often desire.

相關內容

Most prior works in perceiving 3D humans from images reason human in isolation without their surroundings. However, humans are constantly interacting with the surrounding objects, thus calling for models that can reason about not only the human but also the object and their interaction. The problem is extremely challenging due to heavy occlusions between humans and objects, diverse interaction types and depth ambiguity. In this paper, we introduce CHORE, a novel method that learns to jointly reconstruct the human and the object from a single RGB image. CHORE takes inspiration from recent advances in implicit surface learning and classical model-based fitting. We compute a neural reconstruction of human and object represented implicitly with two unsigned distance fields, a correspondence field to a parametric body and an object pose field. This allows us to robustly fit a parametric body model and a 3D object template, while reasoning about interactions. Furthermore, prior pixel-aligned implicit learning methods use synthetic data and make assumptions that are not met in the real data. We propose a elegant depth-aware scaling that allows more efficient shape learning on real data. Experiments show that our joint reconstruction learned with the proposed strategy significantly outperforms the SOTA. Our code and models are available at //virtualhumans.mpi-inf.mpg.de/chore

Traffic speed prediction is the key to many valuable applications, and it is also a challenging task because of its various influencing factors. Recent work attempts to obtain more information through various hybrid models, thereby improving the prediction accuracy. However, the spatial information acquisition schemes of these methods have two-level differentiation problems. Either the modeling is simple but contains little spatial information, or the modeling is complete but lacks flexibility. In order to introduce more spatial information on the basis of ensuring flexibility, this paper proposes IRNet (Transferable Intersection Reconstruction Network). First, this paper reconstructs the intersection into a virtual intersection with the same structure, which simplifies the topology of the road network. Then, the spatial information is subdivided into intersection information and sequence information of traffic flow direction, and spatiotemporal features are obtained through various models. Third, a self-attention mechanism is used to fuse spatiotemporal features for prediction. In the comparison experiment with the baseline, not only the prediction effect, but also the transfer performance has obvious advantages.

Tremendous progress in deep learning over the last years has led towards a future with autonomous vehicles on our roads. Nevertheless, the performance of their perception systems is strongly dependent on the quality of the utilized training data. As these usually only cover a fraction of all object classes an autonomous driving system will face, such systems struggle with handling the unexpected. In order to safely operate on public roads, the identification of objects from unknown classes remains a crucial task. In this paper, we propose a novel pipeline to detect unknown objects. Instead of focusing on a single sensor modality, we make use of lidar and camera data by combining state-of-the art detection models in a sequential manner. We evaluate our approach on the Waymo Open Perception Dataset and point out current research gaps in anomaly detection.

In this paper, we propose a combined use of transformed images and vision transformer (ViT) models transformed with a secret key. We show for the first time that models trained with plain images can be directly transformed to models trained with encrypted images on the basis of the ViT architecture, and the performance of the transformed models is the same as models trained with plain images when using test images encrypted with the key. In addition, the proposed scheme does not require any specially prepared data for training models or network modification, so it also allows us to easily update the secret key. In an experiment, the effectiveness of the proposed scheme is evaluated in terms of performance degradation and model protection performance in an image classification task on the CIFAR-10 dataset.

Image restoration algorithms for atmospheric turbulence are known to be much more challenging to design than traditional ones such as blur or noise because the distortion caused by the turbulence is an entanglement of spatially varying blur, geometric distortion, and sensor noise. Existing CNN-based restoration methods built upon convolutional kernels with static weights are insufficient to handle the spatially dynamical atmospheric turbulence effect. To address this problem, in this paper, we propose a physics-inspired transformer model for imaging through atmospheric turbulence. The proposed network utilizes the power of transformer blocks to jointly extract a dynamical turbulence distortion map and restore a turbulence-free image. In addition, recognizing the lack of a comprehensive dataset, we collect and present two new real-world turbulence datasets that allow for evaluation with both classical objective metrics (e.g., PSNR and SSIM) and a new task-driven metric using text recognition accuracy. Both real testing sets and all related code will be made publicly available.

Despite a growing number of datasets being collected for training 3D object detection models, significant human effort is still required to annotate 3D boxes on LiDAR scans. To automate the annotation and facilitate the production of various customized datasets, we propose an end-to-end multimodal transformer (MTrans) autolabeler, which leverages both LiDAR scans and images to generate precise 3D box annotations from weak 2D bounding boxes. To alleviate the pervasive sparsity problem that hinders existing autolabelers, MTrans densifies the sparse point clouds by generating new 3D points based on 2D image information. With a multi-task design, MTrans segments the foreground/background, densifies LiDAR point clouds, and regresses 3D boxes simultaneously. Experimental results verify the effectiveness of the MTrans for improving the quality of the generated labels. By enriching the sparse point clouds, our method achieves 4.48\% and 4.03\% better 3D AP on KITTI moderate and hard samples, respectively, versus the state-of-the-art autolabeler. MTrans can also be extended to improve the accuracy for 3D object detection, resulting in a remarkable 89.45\% AP on KITTI hard samples. Codes are at \url{//github.com/Cliu2/MTrans}.

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.

Correlation acts as a critical role in the tracking field, especially in recent popular Siamese-based trackers. The correlation operation is a simple fusion manner to consider the similarity between the template and the search region. However, the correlation operation itself is a local linear matching process, leading to lose semantic information and fall into local optimum easily, which may be the bottleneck of designing high-accuracy tracking algorithms. Is there any better feature fusion method than correlation? To address this issue, inspired by Transformer, this work presents a novel attention-based feature fusion network, which effectively combines the template and search region features solely using attention. Specifically, the proposed method includes an ego-context augment module based on self-attention and a cross-feature augment module based on cross-attention. Finally, we present a Transformer tracking (named TransT) method based on the Siamese-like feature extraction backbone, the designed attention-based fusion mechanism, and the classification and regression head. Experiments show that our TransT achieves very promising results on six challenging datasets, especially on large-scale LaSOT, TrackingNet, and GOT-10k benchmarks. Our tracker runs at approximatively 50 fps on GPU. Code and models are available at //github.com/chenxin-dlut/TransT.

Salient object detection is a problem that has been considered in detail and many solutions proposed. In this paper, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is not universal agreement about what constitutes a salient object when multiple observers are queried. This implies that some objects are more likely to be judged salient than others, and implies a relative rank exists on salient objects. The solution presented in this paper solves this more general problem that considers relative rank, and we propose data and metrics suitable to measuring success in a relative objects saliency landscape. A novel deep learning solution is proposed based on a hierarchical representation of relative saliency and stage-wise refinement. We also show that the problem of salient object subitizing can be addressed with the same network, and our approach exceeds performance of any prior work across all metrics considered (both traditional and newly proposed).

北京阿比特科技有限公司