亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Unmanned aerial vehicles (UAVs) and Terahertz (THz) technology are envisioned to play paramount roles in next-generation wireless communications. Hence, this paper presents a novel secure UAV-assisted mobile relaying system operating at THz bands for data acquisition from multiple ground user equipments towards a destination. We assume that the UAV-mounted relay may act, besides providing relaying services, as a potential adversary called the untrusted UAV relay. To safeguard end-to-end communications, we present a secure two-phase transmission strategy with cooperative jamming. Then, we formulate an optimization problem in terms of a new measure $-$ secrecy energy efficiency (SEE), defined as the ratio of achievable average secrecy rate to average system power consumption, which enables us to obtain the best possible security level while taking UAV's inherent flight power limitation into account. This optimization problem leads to a joint design of key system parameters, including UAV's trajectory and velocity, communication scheduling, and power allocations. Since the formulated problem is a mixed-integer nonconvex optimization and computationally intractable, we propose alternative algorithms to solve it efficiently via greedy/sequential block coordinated descent, successive convex approximation, and non-linear fractional programming techniques. Numerical results demonstrate significant SEE performance improvement of our designs when compared to other known benchmarks.

相關內容

Federated learning allows us to distributively train a machine learning model where multiple parties share local model parameters without sharing private data. However, parameter exchange may still leak information. Several approaches have been proposed to overcome this, based on multi-party computation, fully homomorphic encryption, etc.; many of these protocols are slow and impractical for real-world use as they involve a large number of cryptographic operations. In this paper, we propose the use of Trusted Execution Environments (TEE), which provide a platform for isolated execution of code and handling of data, for this purpose. We describe Flatee, an efficient privacy-preserving federated learning framework across TEEs, which considerably reduces training and communication time. Our framework can handle malicious parties (we do not natively solve adversarial data poisoning, though we describe a preliminary approach to handle this).

Self-energy recycling (sER), which allows transmit energy re-utilization, has emerged as a viable option for improving the energy efficiency (EE) in low-power Internet of Things networks. In this work, we investigate its benefits also in terms of reliability improvements and compare the performance of full-duplex (FD) and half-duplex (HD) schemes when using multi-antenna techniques in a communication system. We analyze the trade-offs when considering not only the energy spent on transmission but also the circuitry power consumption, thus making the analysis of much more practical interest. In addition to the well known spectral efficiency improvements, results show that FD also outperforms HD in terms of reliability. We show that sER introduces not only benefits in EE matters but also some modifications on how to achieve maximum reliability fairness between uplink and downlink transmissions, which is the main goal in this work. In order to achieve this objective, we propose the use of a dynamic FD scheme where the small base station (SBS) determines the optimal allocation of antennas for transmission and reception. We show the significant improvement gains of this strategy for the system outage probability when compared to the simple HD and FD schemes.

The communication system is a critical part of the system design for the autonomous UAV. It has to address different considerations, including efficiency, reliability and mobility of the UAV. In addition, a multi-UAV system requires a communication system to assist information sharing, task allocation and collaboration in a team of UAVs. In this paper, we review communication solutions for supporting a team of UAVs while considering an application in the power line inspection industry. We provide a review of candidate wireless communication technologies {for supporting communication in UAV applications. Performance measurements and UAV-related channel modeling of those candidate technologies are reviewed. A discussion of current technologies for building UAV mesh networks is presented. We then analyze the structure, interface and performance of robotic communication middleware, ROS and ROS2. Based on our review, the features and dependencies of candidate solutions in each layer of the communication system are presented.

We consider the energy complexity of the leader election problem in the single-hop radio network model, where each device has a unique identifier in $\{1, 2, \ldots, N\}$. Energy is a scarce resource for small battery-powered devices. For such devices, most of the energy is often spent on communication, not on computation. To approximate the actual energy cost, the energy complexity of an algorithm is defined as the maximum over all devices of the number of time slots where the device transmits or listens. Much progress has been made in understanding the energy complexity of leader election in radio networks, but very little is known about the trade-off between time and energy. $\textbf{Time-energy trade-off:}$ For any $k \geq \log \log N$, we show that a leader among at most $n$ devices can be elected deterministically in $O(k \cdot n^{1+\epsilon}) + O(k \cdot N^{1/k})$ time and $O(k)$ energy if each device can simultaneously transmit and listen, where $\epsilon > 0$ is any small constant. This improves upon the previous $O(N)$-time $O(\log \log N)$-energy algorithm by Chang et al. [STOC 2017]. We provide lower bounds to show that the time-energy trade-off of our algorithm is near-optimal. $\textbf{Dense instances:}$ For the dense instances where the number of devices is $n = \Theta(N)$, we design a deterministic leader election algorithm using only $O(1)$ energy. This improves upon the $O(\log^* N)$-energy algorithm by Jurdzi\'{n}ski et al. [PODC 2002] and the $O(\alpha(N))$-energy algorithm by Chang et al. [STOC 2017]. More specifically, we show that the optimal deterministic energy complexity of leader election is $\Theta\left(\max\left\{1, \log \frac{N}{n}\right\}\right)$ if the devices cannot simultaneously transmit and listen, and it is $\Theta\left(\max\left\{1, \log \log \frac{N}{n}\right\}\right)$ if they can.

Trajectory optimization and model predictive control are essential techniques underpinning advanced robotic applications, ranging from autonomous driving to full-body humanoid control. State-of-the-art algorithms have focused on data-driven approaches that infer the system dynamics online and incorporate posterior uncertainty during planning and control. Despite their success, such approaches are still susceptible to catastrophic errors that may arise due to statistical learning biases, unmodeled disturbances, or even directed adversarial attacks. In this paper, we tackle the problem of dynamics mismatch and propose a distributionally robust optimal control formulation that alternates between two relative entropy trust-region optimization problems. Our method finds the worst-case maximum entropy Gaussian posterior over the dynamics parameters and the corresponding robust policy. Furthermore, we show that our approach admits a closed-form backward-pass for a certain class of systems. Finally, we demonstrate the resulting robustness on linear and nonlinear numerical examples.

We consider a general spectral coexistence scenario, wherein the channels and transmit signals of both radar and communications systems are unknown at the receiver. In this \textit{dual-blind deconvolution} (DBD) problem, a common receiver admits the multi-carrier wireless communications signal that is overlaid with the radar signal reflected-off multiple targets. When the radar receiver is not collocated with the transmitter, such as in passive or multistatic radars, the transmitted signal is also unknown apart from the target parameters. Similarly, apart from the transmitted messages, the communications channel may also be unknown in dynamic environments such as vehicular networks. As a result, the estimation of unknown target and communications parameters in a DBD scenario is highly challenging. In this work, we exploit the sparsity of the channel to solve DBD by casting it as an atomic norm minimization problem. Our theoretical analyses and numerical experiments demonstrate perfect recovery of continuous-valued range-time and Doppler velocities of multiple targets as well as delay-Doppler communications channel parameters using uniformly-spaced time samples in the dual-blind receiver.

Vehicle-to-everything communication system is a strong candidate for improving the driving experience and automotive safety by linking vehicles to wireless networks. To take advantage of the full benefits of vehicle connectivity, it is essential to ensure a stable network connection between roadside unit (RSU) and fast-moving vehicles. Based on the extended Kalman filter (EKF), we develop a vehicle tracking algorithm to enable reliable radio connections. For the vehicle tracking algorithm, we focus on estimating the rapid changes in the beam direction of a high-mobility vehicle while reducing the feedback overhead. Furthermore, we design a beamforming codebook that considers the road layout and RSU. By leveraging the proposed beamforming codebook, vehicles on the road can expect a service quality similar to that of conventional cellular services. Finally, a beamformer selection algorithm is developed to secure sufficient gain for the system's link budget. Numerical results verify that the EKF-based vehicle tracking algorithm and the proposed beamforming structure are more suitable for vehicle-to-infrastructure networks compared to existing schemes.

Influence maximization is the task of selecting a small number of seed nodes in a social network to maximize the spread of the influence from these seeds, and it has been widely investigated in the past two decades. In the canonical setting, the whole social network as well as its diffusion parameters is given as input. In this paper, we consider the more realistic sampling setting where the network is unknown and we only have a set of passively observed cascades that record the set of activated nodes at each diffusion step. We study the task of influence maximization from these cascade samples (IMS), and present constant approximation algorithms for this task under mild conditions on the seed set distribution. To achieve the optimization goal, we also provide a novel solution to the network inference problem, that is, learning diffusion parameters and the network structure from the cascade data. Comparing with prior solutions, our network inference algorithm requires weaker assumptions and does not rely on maximum-likelihood estimation and convex programming. Our IMS algorithms enhance the learning-and-then-optimization approach by allowing a constant approximation ratio even when the diffusion parameters are hard to learn, and we do not need any assumption related to the network structure or diffusion parameters.

Recommender systems rely on large datasets of historical data and entail serious privacy risks. A server offering recommendations as a service to a client might leak more information than necessary regarding its recommendation model and training dataset. At the same time, the disclosure of the client's preferences to the server is also a matter of concern. Providing recommendations while preserving privacy in both senses is a difficult task, which often comes into conflict with the utility of the system in terms of its recommendation-accuracy and efficiency. Widely-purposed cryptographic primitives such as secure multi-party computation and homomorphic encryption offer strong security guarantees, but in conjunction with state-of-the-art recommender systems yield far-from-practical solutions. We precisely define the above notion of security and propose CryptoRec, a novel recommendations-as-a-service protocol, which encompasses a crypto-friendly recommender system. This model possesses two interesting properties: (1) It models user-item interactions in a user-free latent feature space in which it captures personalized user features by an aggregation of item features. This means that a server with a pre-trained model can provide recommendations for a client without having to re-train the model with the client's preferences. Nevertheless, re-training the model still improves accuracy. (2) It only uses addition and multiplication operations, making the model straightforwardly compatible with homomorphic encryption schemes.

We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multi-agent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.

北京阿比特科技有限公司