亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The pandemic COVID-19 disease has had a dramatic impact on almost all countries around the world so that many hospitals have been overwhelmed with Covid-19 cases. As medical resources are limited, deciding on the proper allocation of these resources is a very crucial issue. Besides, uncertainty is a major factor that can affect decisions, especially in medical fields. To cope with this issue, we use fuzzy logic (FL) as one of the most suitable methods in modeling systems with high uncertainty and complexity. We intend to make use of the advantages of FL in decisions on cases that need to treat in ICU. In this study, an interval type-2 fuzzy expert system is proposed for prediction of ICU admission in COVID-19 patients. For this prediction task, we also developed an adaptive neuro-fuzzy inference system (ANFIS). Finally, the results of these fuzzy systems are compared to some well-known classification methods such as Naive Bayes (NB), Case-Based Reasoning (CBR), Decision Tree (DT), and K Nearest Neighbor (KNN). The results show that the type-2 fuzzy expert system and ANFIS models perform competitively in terms of accuracy and F-measure compared to the other system modeling techniques.

相關內容

專(zhuan)家(jia)系統(tong)(Expert Systems)發表的(de)(de)(de)(de)論(lun)文涉及(ji)(ji)知識工程(cheng)的(de)(de)(de)(de)各個(ge)方(fang)面,包括(kuo)知識獲取和(he)(he)表達的(de)(de)(de)(de)各個(ge)方(fang)法(fa)和(he)(he)技術,以(yi)(yi)及(ji)(ji)它們(men)在(zai)基于這(zhe)些方(fang)法(fa)和(he)(he)技術的(de)(de)(de)(de)系統(tong)(包括(kuo)專(zhuan)家(jia)系統(tong))構(gou)建(jian)中(zhong)的(de)(de)(de)(de)應用(yong)。詳(xiang)細(xi)的(de)(de)(de)(de)科學評價是任何論(lun)文的(de)(de)(de)(de)重要組(zu)成部分。除了傳統(tong)的(de)(de)(de)(de)應用(yong)領域(yu),如軟件與需求工程(cheng)、人機交互和(he)(he)人工智能,我(wo)們(men)還瞄準了這(zhe)些技術的(de)(de)(de)(de)新興市(shi)場,如商業、經(jing)濟、市(shi)場研究和(he)(he)醫療衛(wei)生保(bao)健。向這(zhe)一(yi)(yi)新的(de)(de)(de)(de)重點的(de)(de)(de)(de)轉變將以(yi)(yi)一(yi)(yi)系列特(te)別(bie)問題為標志,這(zhe)些問題包括(kuo)熱(re)點和(he)(he)新出現的(de)(de)(de)(de)主題。 官網地址:

We introduce and study the online pause and resume problem. In this problem, a player attempts to find the $k$ lowest (alternatively, highest) prices in a sequence of fixed length $T$, which is revealed sequentially. At each time step, the player is presented with a price and decides whether to accept or reject it. The player incurs a switching cost whenever their decision changes in consecutive time steps, i.e., whenever they pause or resume purchasing. This online problem is motivated by the goal of carbon-aware load shifting, where a workload may be paused during periods of high carbon intensity and resumed during periods of low carbon intensity and incurs a cost when saving or restoring its state. It has strong connections to existing problems studied in the literature on online optimization, though it introduces unique technical challenges that prevent the direct application of existing algorithms. Extending prior work on threshold-based algorithms, we introduce double-threshold algorithms for both the minimization and maximization variants of this problem. We further show that the competitive ratios achieved by these algorithms are the best achievable by any deterministic online algorithm. Finally, we empirically validate our proposed algorithm through case studies on the application of carbon-aware load shifting using real carbon trace data and existing baseline algorithms.

Several research works have applied Reinforcement Learning (RL) algorithms to solve the Rate Adaptation (RA) problem in Wi-Fi networks. The dynamic nature of the radio link requires the algorithms to be responsive to changes in link quality. Delays in the execution of the algorithm may be detrimental to its performance, which in turn may decrease network performance. This aspect has been overlooked in the state of the art. In this paper, we present an analysis of common computational delays in RL-based RA algorithms, and propose a methodology that may be applied to reduce these computational delays and increase the efficiency of this type of algorithms. We apply the proposed methodology to an existing RL-based RA algorithm. The obtained experimental results indicate a reduction of one order of magnitude in the execution time of the algorithm, improving its responsiveness to link quality changes.

In an effort to provide regional decision support for the public healthcare, we design a data-driven compartment-based model of COVID-19 in Sweden. From national hospital statistics we derive parameter priors, and we develop linear filtering techniques to drive the simulations given data in the form of daily healthcare demands. We additionally propose a posterior marginal estimator which provides for an improved temporal resolution of the reproduction number estimate as well as supports robustness checks via a parametric bootstrap procedure. From our computational approach we obtain a Bayesian model of predictive value which provides important insight into the progression of the disease, including estimates of the effective reproduction number, the infection fatality rate, and the regional-level immunity. We successfully validate our posterior model against several different sources, including outputs from extensive screening programs. Since our required data in comparison is easy and non-sensitive to collect, we argue that our approach is particularly promising as a tool to support monitoring and decisions within public health.

For many applications of agent-based models (ABMs), an agent's age influences important decisions (e.g. their contribution to/withdrawal from pension funds, their level of risk aversion in decision-making, etc.) and outcomes in their life cycle (e.g. their susceptibility to disease). These considerations make it crucial to accurately capture the age distribution of the population being considered. Often, empirical survival probabilities cannot be used in ABMs to generate the observed age structure due to discrepancies between samples or models (between the ABM and the survival statistical model used to produce empirical rates). In these cases, imputing empirical survival probabilities will not generate the observed age structure of the population, and assumptions such as exogenous agent inflows are necessary (but not necessarily empirically valid). In this paper, we propose a method that allows for the preservation of agent age-structure without the exogenous influx of agents, even when only a subset of the population is being modelled. We demonstrate the flexibility and accuracy of our methodology by performing simulations of several real-world age distributions. This method is a useful tool for those developing ABMs across a broad range of applications.

Causal inference is a study of causal relationships between events and the statistical study of inferring these relationships through interventions and other statistical techniques. Causal reasoning is any line of work toward determining causal relationships, including causal inference. This paper explores the relationship between causal reasoning and various fields of software engineering. This paper aims to uncover which software engineering fields are currently benefiting from the study of causal inference and causal reasoning, as well as which aspects of various problems are best addressed using this methodology. With this information, this paper also aims to find future subjects and fields that would benefit from this form of reasoning and to provide that information to future researchers. This paper follows a systematic literature review, including; the formulation of a search query, inclusion and exclusion criteria of the search results, clarifying questions answered by the found literature, and synthesizing the results from the literature review. Through close examination of the 45 found papers relevant to the research questions, it was revealed that the majority of causal reasoning as related to software engineering is related to testing through root cause localization. Furthermore, most causal reasoning is done informally through an exploratory process of forming a Causality Graph as opposed to strict statistical analysis or introduction of interventions. Finally, causal reasoning is also used as a justification for many tools intended to make the software more human-readable by providing additional causal information to logging processes or modeling languages.

Inverse optimal control methods can be used to characterize behavior in sequential decision-making tasks. Most existing work, however, requires the control signals to be known, or is limited to fully-observable or linear systems. This paper introduces a probabilistic approach to inverse optimal control for stochastic non-linear systems with missing control signals and partial observability that unifies existing approaches. By using an explicit model of the noise characteristics of the sensory and control systems of the agent in conjunction with local linearization techniques, we derive an approximate likelihood for the model parameters, which can be computed within a single forward pass. We evaluate our proposed method on stochastic and partially observable version of classic control tasks, a navigation task, and a manual reaching task. The proposed method has broad applicability, ranging from imitation learning to sensorimotor neuroscience.

In the context of simulation-based methods, multiple challenges arise, two of which are considered in this work. As a first challenge, problems including time-dependent phenomena with complex domain deformations, potentially even with changes in the domain topology, need to be tackled appropriately. The second challenge arises when computational resources and the time for evaluating the model become critical in so-called many query scenarios for parametric problems. For example, these problems occur in optimization, uncertainty quantification (UQ), or automatic control and using highly resolved full-order models (FOMs) may become impractical. To address both types of complexity, we present a novel projection-based model order reduction (MOR) approach for deforming domain problems that takes advantage of the time-continuous space-time formulation. We apply it to two examples that are relevant for engineering or biomedical applications and conduct an error and performance analysis. In both cases, we are able to drastically reduce the computational expense for a model evaluation and, at the same time, to maintain an adequate accuracy level. All in all, this work indicates the effectiveness of the presented MOR approach for deforming domain problems taking advantage of a time-continuous space-time setting.

Deep learning is effective in diagnosing COVID-19 and requires a large amount of data to be effectively trained. Due to data and privacy regulations, hospitals generally have no access to data from other hospitals. Federated learning (FL) has been used to solve this problem, where it utilizes a distributed setting to train models in hospitals in a privacy-preserving manner. Deploying FL is not always feasible as it requires high computation and network communication resources. This paper evaluates five FL algorithms' performance and resource efficiency for Covid-19 detection. A decentralized setting with CNN networks is set up, and the performance of FL algorithms is compared with a centralized environment. We examined the algorithms with varying numbers of participants, federated rounds, and selection algorithms. Our results show that cyclic weight transfer can have better overall performance, and results are better with fewer participating hospitals. Our results demonstrate good performance for detecting COVID-19 patients and might be useful in deploying FL algorithms for covid-19 detection and medical image analysis in general.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司