亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Research organisations and their research outputs have been growing considerably in the past decades. This large body of knowledge attracts various stakeholders, e.g., for knowledge sharing, technology transfer, or potential collaborations. However, due to the large amount of complex knowledge created, traditional methods of manually curating catalogues are often out of time, imprecise, and cumbersome. Finding domain experts and knowledge within any larger organisation, scientific and also industrial, has thus become a serious challenge. Hence, exploring an institutions domain knowledge and finding its experts can only be solved by an automated solution. This work presents the scheme of an automated approach for identifying scholarly experts based on their publications and, prospectively, their teaching materials. Based on a search engine, this approach is currently being implemented for two universities, for which some examples are presented. The proposed system will be helpful for finding peer researchers as well as starting points for knowledge exploitation and technology transfer. As the system is designed in a scalable manner, it can easily include additional institutions and hence provide a broader coverage of research facilities in the future.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

We study the task of online learning in the presence of Massart noise. Instead of assuming that the online adversary chooses an arbitrary sequence of labels, we assume that the context $\mathbf{x}$ is selected adversarially but the label $y$ presented to the learner disagrees with the ground-truth label of $\mathbf{x}$ with unknown probability at most $\eta$. We study the fundamental class of $\gamma$-margin linear classifiers and present a computationally efficient algorithm that achieves mistake bound $\eta T + o(T)$. Our mistake bound is qualitatively tight for efficient algorithms: it is known that even in the offline setting achieving classification error better than $\eta$ requires super-polynomial time in the SQ model. We extend our online learning model to a $k$-arm contextual bandit setting where the rewards -- instead of satisfying commonly used realizability assumptions -- are consistent (in expectation) with some linear ranking function with weight vector $\mathbf{w}^\ast$. Given a list of contexts $\mathbf{x}_1,\ldots \mathbf{x}_k$, if $\mathbf{w}^*\cdot \mathbf{x}_i > \mathbf{w}^* \cdot \mathbf{x}_j$, the expected reward of action $i$ must be larger than that of $j$ by at least $\Delta$. We use our Massart online learner to design an efficient bandit algorithm that obtains expected reward at least $(1-1/k)~ \Delta T - o(T)$ bigger than choosing a random action at every round.

Oblivious transfer (OT) is a fundamental primitive for secure two-party computation. It is well known that OT cannot be implemented with information-theoretic security if the two players only have access to noiseless communication channels, even in the quantum case. As a result, weaker variants of OT have been studied. In this work, we rigorously establish the impossibility of cheat-sensitive OT, where a dishonest party can cheat, but risks being detected. We construct a general attack on any quantum protocol that allows the receiver to compute all inputs of the sender and provide an explicit upper bound on the success probability of this attack. This implies that cheat-sensitive quantum Symmetric Private Information Retrieval cannot be implemented with statistical information-theoretic security. Leveraging the techniques devised for our proofs, we provide entropic bounds on primitives needed for secure function evaluation. They imply impossibility results for protocols where the players have access to OT as a resource. This result significantly improves upon existing bounds and yields tight bounds for reductions of 1-out-of-n OT to a resource primitive. Our results hold in particular for transformations between a finite number of primitives and for any error.

Modeling the shape of garments has received much attention, but most existing approaches assume the garments to be worn by someone, which constrains the range of shapes they can assume. In this work, we address shape recovery when garments are being manipulated instead of worn, which gives rise to an even larger range of possible shapes. To this end, we leverage the implicit sewing patterns (ISP) model for garment modeling and extend it by adding a diffusion-based deformation prior to represent these shapes. To recover 3D garment shapes from incomplete 3D point clouds acquired when the garment is folded, we map the points to UV space, in which our priors are learned, to produce partial UV maps, and then fit the priors to recover complete UV maps and 2D to 3D mappings. Experimental results demonstrate the superior reconstruction accuracy of our method compared to previous ones, especially when dealing with large non-rigid deformations arising from the manipulations.

Interactive theorem provers, like Isabelle/HOL, Coq and Lean, have expressive languages that allow the formalization of general mathematical objects and proofs. In this context, an important goal is to reduce the time and effort needed to prove theorems. A significant means of achieving this is by improving proof automation. We have implemented an early prototype of proof automation for equational reasoning in Lean by using equality saturation. To achieve this, we need to bridge the gap between Lean's expression semantics and the syntactically driven e-graphs in equality saturation. This involves handling bound variables, implicit typing, as well as Lean's definitional equality, which is more general than syntactic equality and involves notions like $\alpha$-equivalence, $\beta$-reduction, and $\eta$-reduction. In this extended abstract, we highlight how we attempt to bridge this gap, and which challenges remain to be solved. Notably, while our techniques are partially unsound, the resulting proof automation remains sound by virtue of Lean's proof checking.

Chain of thought (CoT) has proven useful for problems requiring complex reasoning. Many of these problems are both textual and multimodal. Given the inputs in different modalities, a model generates a rationale and then uses it to answer a question. Because of the hallucination issue, the generated soft negative rationales with high textual quality but illogical semantics do not always help improve answer accuracy. This study proposes a rationale generation method using soft negative sampling (SNSE-CoT) to mitigate hallucinations in multimodal CoT. Five methods were applied to generate soft negative samples that shared highly similar text but had different semantics from the original. Bidirectional margin loss (BML) was applied to introduce them into the traditional contrastive learning framework that involves only positive and negative samples. Extensive experiments on the ScienceQA dataset demonstrated the effectiveness of the proposed method. Code and data are released at //github.com/zgMin/SNSE-CoT.

The hypothesis of conscious machines has been debated since the invention of the notion of artificial intelligence, powered by the assumption that the computational intelligence achieved by a system is the cause of the emergence of phenomenal consciousness in that system as an epiphenomenon or as a consequence of the behavioral or internal complexity of the system surpassing some threshold. As a consequence, a huge amount of literature exploring the possibility of machine consciousness and how to implement it on a computer has been published. Moreover, common folk psychology and transhumanism literature has fed this hypothesis with the popularity of science fiction literature, where intelligent robots are usually antropomorphized and hence given phenomenal consciousness. However, in this work, we argue how these literature lacks scientific rigour, being impossible to falsify the opposite hypothesis, and illustrate a list of arguments that show how every approach that the machine consciousness literature has published depends on philosophical assumptions that cannot be proven by the scientific method. Concretely, we also show how phenomenal consciousness is not computable, independently on the complexity of the algorithm or model, cannot be objectively measured nor quantitatively defined and it is basically a phenomenon that is subjective and internal to the observer. Given all those arguments we end the work arguing why the idea of conscious machines is nowadays a myth of transhumanism and science fiction culture.

The humanlike responses of large language models (LLMs) have prompted social scientists to investigate whether LLMs can be used to simulate human participants in experiments, opinion polls and surveys. Of central interest in this line of research has been mapping out the psychological profiles of LLMs by prompting them to respond to standardized questionnaires. The conflicting findings of this research are unsurprising given that mapping out underlying, or latent, traits from LLMs' text responses to questionnaires is no easy task. To address this, we use psychometrics, the science of psychological measurement. In this study, we prompt OpenAI's flagship models, GPT-3.5 and GPT-4, to assume different personas and respond to a range of standardized measures of personality constructs. We used two kinds of persona descriptions: either generic (four or five random person descriptions) or specific (mostly demographics of actual humans from a large-scale human dataset). We found that the responses from GPT-4, but not GPT-3.5, using generic persona descriptions show promising, albeit not perfect, psychometric properties, similar to human norms, but the data from both LLMs when using specific demographic profiles, show poor psychometrics properties. We conclude that, currently, when LLMs are asked to simulate silicon personas, their responses are poor signals of potentially underlying latent traits. Thus, our work casts doubt on LLMs' ability to simulate individual-level human behaviour across multiple-choice question answering tasks.

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

北京阿比特科技有限公司