Comparing graphs of optimal transport has recently gained significant attention, as the distances induced by optimal transport provide both a principled metric between graphs as well as an interpretable description of the associated changes between graphs in terms of a transport plan. As the lack of symmetry introduces challenges in the typically considered formulations, optimal transport distances for graphs have mostly been developed for undirected graphs. Here, we propose two distance measures to compare directed graphs based on variants of optimal transport: (i) an earth movers distance (Wasserstein) and (ii) a Gromov-Wasserstein (GW) distance. We evaluate these two distances and discuss their relative performance for both simulated graph data and real-world directed cell-cell communication graphs, inferred from single-cell RNA-seq data.
Ensemble forecasts and their combination are explored from the perspective of a probability space. Manipulating ensemble forecasts as discrete probability distributions, multi-model ensembles (MMEs) are reformulated as barycenters of these distributions. Barycenters are defined with respect to a given distance. The barycenter with respect to the L2-distance is shown to be equivalent to the pooling method. Then, the barycenter-based approach is extended to a different distance with interesting properties in the distribution space: the Wasserstein distance. Another interesting feature of the barycenter approach is the possibility to give different weights to the ensembles and so to naturally build weighted MME. As a proof of concept, the L2- and the Wasserstein-barycenters are applied to combine two models from the S2S database, namely the European Centre Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) models. The performance of the two (weighted-) MMEs are evaluated for the prediction of weekly 2m-temperature over Europe for seven winters. The weights given to the models in the barycenters are optimized with respect to two metrics, the CRPS and the proportion of skilful forecasts. These weights have an important impact on the skill of the two barycenter-based MMEs. Although the ECMWF model has an overall better performance than NCEP, the barycenter-ensembles are generally able to outperform both. However, the best MME method, but also the weights, are dependent on the metric. These results constitute a promising first implementation of this methodology before moving to combination of more models.
Adversarial examples resulting from instability of current computer vision models are an extremely important topic due to their potential to compromise any application. In this paper we demonstrate that instability is inevitable due to a) symmetries (translational invariance) of the data, b) the categorical nature of the classification task, and c) the fundamental discrepancy of classifying images as objects themselves. The issue is further exacerbated by non-exhaustive labelling of the training data. Therefore we conclude that instability is a necessary result of how the problem of computer vision is currently formulated. While the problem cannot be eliminated, through the analysis of the causes, we have arrived at ways how it can be partially alleviated. These include i) increasing the resolution of images, ii) providing contextual information for the image, iii) exhaustive labelling of training data, and iv) preventing attackers from frequent access to the computer vision system.
Automated interpretation of signals yields many impressive applications from the area of affective computing and human activity recognition (HAR). In this paper we ask the question about possibility of cognitive activity recognition on the base of particular set of signals. We use recognition of the game played by the participant as a playground for exploration of the problem. We build classifier of three different games (Space Invaders, Tetris, Tower Defence) and inter-game pause. We validate classifier in the player-independent and player-dependent scenario. We discuss the improvement in the player-dependent scenario in the context of biometric person recognition. On the base of the results obtained in game classification, we consider potential applications in smart surveillance and quantified self.
The success of over-parameterized neural networks trained to near-zero training error has caused great interest in the phenomenon of benign overfitting, where estimators are statistically consistent even though they interpolate noisy training data. While benign overfitting in fixed dimension has been established for some learning methods, current literature suggests that for regression with typical kernel methods and wide neural networks, benign overfitting requires a high-dimensional setting where the dimension grows with the sample size. In this paper, we show that the smoothness of the estimators, and not the dimension, is the key: benign overfitting is possible if and only if the estimator's derivatives are large enough. We generalize existing inconsistency results to non-interpolating models and more kernels to show that benign overfitting with moderate derivatives is impossible in fixed dimension. Conversely, we show that rate-optimal benign overfitting is possible for regression with a sequence of spiky-smooth kernels with large derivatives. Using neural tangent kernels, we translate our results to wide neural networks. We prove that while infinite-width networks do not overfit benignly with the ReLU activation, this can be fixed by adding small high-frequency fluctuations to the activation function. Our experiments verify that such neural networks, while overfitting, can indeed generalize well even on low-dimensional data sets.
In recent decades, the use of optical detection systems for meteor studies has increased dramatically, resulting in huge amounts of data being analyzed. Automated meteor detection tools are essential for studying the continuous meteoroid incoming flux, recovering fresh meteorites, and achieving a better understanding of our Solar System. Concerning meteor detection, distinguishing false positives between meteor and non-meteor images has traditionally been performed by hand, which is significantly time-consuming. To address this issue, we developed a fully automated pipeline that uses Convolutional Neural Networks (CNNs) to classify candidate meteor detections. Our new method is able to detect meteors even in images that contain static elements such as clouds, the Moon, and buildings. To accurately locate the meteor within each frame, we employ the Gradient-weighted Class Activation Mapping (Grad-CAM) technique. This method facilitates the identification of the region of interest by multiplying the activations from the last convolutional layer with the average of the gradients across the feature map of that layer. By combining these findings with the activation map derived from the first convolutional layer, we effectively pinpoint the most probable pixel location of the meteor. We trained and evaluated our model on a large dataset collected by the Spanish Meteor Network (SPMN) and achieved a precision of 98\%. Our new methodology presented here has the potential to reduce the workload of meteor scientists and station operators and improve the accuracy of meteor tracking and classification.
The prevailing statistical approach to analyzing persistence diagrams is concerned with filtering out topological noise. In this paper, we adopt a different viewpoint and aim at estimating the actual distribution of a random persistence diagram, which captures both topological signal and noise. To that effect, Chazel and Divol (2019) proved that, under general conditions, the expected value of a random persistence diagram is a measure admitting a Lebesgue density, called the persistence intensity function. In this paper, we are concerned with estimating the persistence intensity function and a novel, normalized version of it -- called the persistence density function. We present a class of kernel-based estimators based on an i.i.d. sample of persistence diagrams and derive estimation rates in the supremum norm. As a direct corollary, we obtain uniform consistency rates for estimating linear representations of persistence diagrams, including Betti numbers and persistence surfaces. Interestingly, the persistence density function delivers stronger statistical guarantees.
Whittle-Mat\'ern fields are a recently introduced class of Gaussian processes on metric graphs, which are specified as solutions to a fractional-order stochastic differential equation. Unlike earlier covariance-based approaches for specifying Gaussian fields on metric graphs, the Whittle-Mat\'ern fields are well-defined for any compact metric graph and can provide Gaussian processes with differentiable sample paths. We derive the main statistical properties of the model class, particularly the consistency and asymptotic normality of maximum likelihood estimators of model parameters and the necessary and sufficient conditions for asymptotic optimality properties of linear prediction based on the model with misspecified parameters. The covariance function of the Whittle-Mat\'ern fields is generally unavailable in closed form, and they have therefore been challenging to use for statistical inference. However, we show that for specific values of the fractional exponent, when the fields have Markov properties, likelihood-based inference and spatial prediction can be performed exactly and computationally efficiently. This facilitates using the Whittle-Mat\'ern fields in statistical applications involving big datasets without the need for any approximations. The methods are illustrated via an application to modeling of traffic data, where allowing for differentiable processes dramatically improves the results.
We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.