Whittle-Mat\'ern fields are a recently introduced class of Gaussian processes on metric graphs, which are specified as solutions to a fractional-order stochastic differential equation. Unlike earlier covariance-based approaches for specifying Gaussian fields on metric graphs, the Whittle-Mat\'ern fields are well-defined for any compact metric graph and can provide Gaussian processes with differentiable sample paths. We derive the main statistical properties of the model class, particularly the consistency and asymptotic normality of maximum likelihood estimators of model parameters and the necessary and sufficient conditions for asymptotic optimality properties of linear prediction based on the model with misspecified parameters. The covariance function of the Whittle-Mat\'ern fields is generally unavailable in closed form, and they have therefore been challenging to use for statistical inference. However, we show that for specific values of the fractional exponent, when the fields have Markov properties, likelihood-based inference and spatial prediction can be performed exactly and computationally efficiently. This facilitates using the Whittle-Mat\'ern fields in statistical applications involving big datasets without the need for any approximations. The methods are illustrated via an application to modeling of traffic data, where allowing for differentiable processes dramatically improves the results.
Motivated by the need for the rigorous analysis of the numerical stability of variational least-squares kernel-based methods for solving second-order elliptic partial differential equations, we provide previously lacking stability inequalities. This fills a significant theoretical gap in the previous work [Comput. Math. Appl. 103 (2021) 1-11], which provided error estimates based on a conjecture on the stability. With the stability estimate now rigorously proven, we complete the theoretical foundations and compare the convergence behavior to the proven rates. Furthermore, we establish another stability inequality involving weighted-discrete norms, and provide a theoretical proof demonstrating that the exact quadrature weights are not necessary for the weighted least-squares kernel-based collocation method to converge. Our novel theoretical insights are validated by numerical examples, which showcase the relative efficiency and accuracy of these methods on data sets with large mesh ratios. The results confirm our theoretical predictions regarding the performance of variational least-squares kernel-based method, least-squares kernel-based collocation method, and our new weighted least-squares kernel-based collocation method. Most importantly, our results demonstrate that all methods converge at the same rate, validating the convergence theory of weighted least-squares in our proven theories.
Neural operators have been validated as promising deep surrogate models for solving partial differential equations (PDEs). Despite the critical role of boundary conditions in PDEs, however, only a limited number of neural operators robustly enforce these conditions. In this paper we introduce semi-periodic Fourier neural operator (SPFNO), a novel spectral operator learning method, to learn the target operators of PDEs with non-periodic BCs. This method extends our previous work (arXiv:2206.12698), which showed significant improvements by employing enhanced neural operators that precisely satisfy the boundary conditions. However, the previous work is associated with Gaussian grids, restricting comprehensive comparisons across most public datasets. Additionally, we present numerical results for various PDEs such as the viscous Burgers' equation, Darcy flow, incompressible pipe flow, and coupled reactiondiffusion equations. These results demonstrate the computational efficiency, resolution invariant property, and BC-satisfaction behavior of proposed model. An accuracy improvement of approximately 1.7X-4.7X over the non-BC-satisfying baselines is also achieved. Furthermore, our studies on SOL underscore the significance of satisfying BCs as a criterion for deep surrogate models of PDEs.
In this work we consider the two dimensional instationary Navier-Stokes equations with homogeneous Dirichlet/no-slip boundary conditions. We show error estimates for the fully discrete problem, where a discontinuous Galerkin method in time and inf-sup stable finite elements in space are used. Recently, best approximation type error estimates for the Stokes problem in the $L^\infty(I;L^2(\Omega))$, $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms have been shown. The main result of the present work extends the error estimate in the $L^\infty(I;L^2(\Omega))$ norm to the Navier-Stokes equations, by pursuing an error splitting approach and an appropriate duality argument. In order to discuss the stability of solutions to the discrete primal and dual equations, a specially tailored discrete Gronwall lemma is presented. The techniques developed towards showing the $L^\infty(I;L^2(\Omega))$ error estimate, also allow us to show best approximation type error estimates in the $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms, which complement this work.
Normal modal logics extending the logic K4.3 of linear transitive frames are known to lack the Craig interpolation property, except some logics of bounded depth such as S5. We turn this `negative' fact into a research question and pursue a non-uniform approach to Craig interpolation by investigating the following interpolant existence problem: decide whether there exists a Craig interpolant between two given formulas in any fixed logic above K4.3. Using a bisimulation-based characterisation of interpolant existence for descriptive frames, we show that this problem is decidable and coNP-complete for all finitely axiomatisable normal modal logics containing K4.3. It is thus not harder than entailment in these logics, which is in sharp contrast to other recent non-uniform interpolation results. We also extend our approach to Priorean temporal logics (with both past and future modalities) over the standard time flows-the integers, rationals, reals, and finite strict linear orders-none of which is blessed with the Craig interpolation property.
Maxwell-Amp\`{e}re-Nernst-Planck (MANP) equations were recently proposed to model the dynamics of charged particles. In this study, we enhance a numerical algorithm of this system with deep learning tools. The proposed hybrid algorithm provides an automated means to determine a proper approximation for the dummy variables, which can otherwise only be obtained through massive numerical tests. In addition, the original method is validated for 2-dimensional problems. However, when the spatial dimension is one, the original curl-free relaxation component is inapplicable, and the approximation formula for dummy variables, which works well in a 2-dimensional scenario, fails to provide a reasonable output in the 1-dimensional case. The proposed method can be readily generalised to cases with one spatial dimension. Experiments show numerical stability and good convergence to the steady-state solution obtained from Poisson-Boltzmann type equations in the 1-dimensional case. The experiments conducted in the 2-dimensional case indicate that the proposed method preserves the conservation properties.
The accurate and efficient evaluation of Newtonian potentials over general 2-D domains is important for the numerical solution of Poisson's equation and volume integral equations. In this paper, we present a simple and efficient high-order algorithm for computing the Newtonian potential over a planar domain discretized by an unstructured mesh. The algorithm is based on the use of Green's third identity for transforming the Newtonian potential into a collection of layer potentials over the boundaries of the mesh elements, which can be easily evaluated by the Helsing-Ojala method. One important component of our algorithm is the use of high-order (up to order 20) bivariate polynomial interpolation in the monomial basis, for which we provide extensive justification. The performance of our algorithm is illustrated through several numerical experiments.
Spatial statistics is traditionally based on stationary models on $\mathbb{R^d}$ like Mat\'ern fields. The adaptation of traditional spatial statistical methods, originally designed for stationary models in Euclidean spaces, to effectively model phenomena on linear networks such as stream systems and urban road networks is challenging. The current study aims to analyze the incidence of traffic accidents on road networks using three different methodologies and compare the model performance for each methodology. Initially, we analyzed the application of spatial triangulation precisely on road networks instead of traditional continuous regions. However, this approach posed challenges in areas with complex boundaries, leading to the emergence of artificial spatial dependencies. To address this, we applied an alternative computational method to construct nonstationary barrier models. Finally, we explored a recently proposed class of Gaussian processes on compact metric graphs, the Whittle-Mat\'ern fields, defined by a fractional SPDE on the metric graph. The latter fields are a natural extension of Gaussian fields with Mat\'ern covariance functions on Euclidean domains to non-Euclidean metric graph settings. A ten-year period (2010-2019) of daily traffic-accident records from Barcelona, Spain have been used to evaluate the three models referred above. While comparing model performance we observed that the Whittle-Mat\'ern fields defined directly on the network outperformed the network triangulation and barrier models. Due to their flexibility, the Whittle-Mat\'ern fields can be applied to a wide range of environmental problems on linear networks such as spatio-temporal modeling of water contamination in stream networks or modeling air quality or accidents on urban road networks.
We present a new stability and error analysis of fully discrete approximation schemes for the transient Stokes equation. For the spatial discretization, we consider a wide class of Galerkin finite element methods which includes both inf-sup stable spaces and symmetric pressure stabilized formulations. We extend the results from Burman and Fern\'andez [\textit{SIAM J. Numer. Anal.}, 47 (2009), pp. 409-439] and provide a unified theoretical analysis of backward difference formulae (BDF methods) of order 1 to 6. The main novelty of our approach lies in the use of Dahlquist's G-stability concept together with multiplier techniques introduced by Nevannlina-Odeh and recently by Akrivis et al. [\textit{SIAM J. Numer. Anal.}, 59 (2021), pp. 2449-2472] to derive optimal stability and error estimates for both the velocity and the pressure. When combined with a method dependent Ritz projection for the initial data, unconditional stability can be shown while for arbitrary interpolation, pressure stability is subordinate to the fulfillment of a mild inverse CFL-type condition between space and time discretizations.
Finite-dimensional truncations are routinely used to approximate partial differential equations (PDEs), either to obtain numerical solutions or to derive reduced-order models. The resulting discretized equations are known to violate certain physical properties of the system. In particular, first integrals of the PDE may not remain invariant after discretization. Here, we use the method of reduced-order nonlinear solutions (RONS) to ensure that the conserved quantities of the PDE survive its finite-dimensional truncation. In particular, we develop two methods: Galerkin RONS and finite volume RONS. Galerkin RONS ensures the conservation of first integrals in Galerkin-type truncations, whether used for direct numerical simulations or reduced-order modeling. Similarly, finite volume RONS conserves any number of first integrals of the system, including its total energy, after finite volume discretization. Both methods are applicable to general time-dependent PDEs and can be easily incorporated in existing Galerkin-type or finite volume code. We demonstrate the efficacy of our methods on two examples: direct numerical simulations of the shallow water equation and a reduced-order model of the nonlinear Schrodinger equation. As a byproduct, we also generalize RONS to phenomena described by a system of PDEs.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.