LiDAR sensor is essential to the perception system in autonomous vehicles and intelligent robots. To fulfill the real-time requirements in real-world applications, it is necessary to efficiently segment the LiDAR scans. Most of previous approaches directly project 3D point cloud onto the 2D spherical range image so that they can make use of the efficient 2D convolutional operations for image segmentation. Although having achieved the encouraging results, the neighborhood information is not well-preserved in the spherical projection. Moreover, the temporal information is not taken into consideration in the single scan segmentation task. To tackle these problems, we propose a novel approach to semantic segmentation for LiDAR sequences named Meta-RangeSeg, where a new range residual image representation is introduced to capture the spatial-temporal information. Specifically, Meta-Kernel is employed to extract the meta features, which reduces the inconsistency between the 2D range image coordinates input and 3D Cartesian coordinates output. An efficient U-Net backbone is used to obtain the multi-scale features. Furthermore, Feature Aggregation Module (FAM) strengthens the role of range channel and aggregates features at different levels. We have conducted extensive experiments for performance evaluation on SemanticKITTI and SemanticPOSS. The promising results show that our proposed Meta-RangeSeg method is more efficient and effective than the existing approaches. Our full implementation is publicly available at //github.com/songw-zju/Meta-RangeSeg .
Recurrent neural networks have a strong inductive bias towards learning temporally compressed representations, as the entire history of a sequence is represented by a single vector. By contrast, Transformers have little inductive bias towards learning temporally compressed representations, as they allow for attention over all previously computed elements in a sequence. Having a more compressed representation of a sequence may be beneficial for generalization, as a high-level representation may be more easily re-used and re-purposed and will contain fewer irrelevant details. At the same time, excessive compression of representations comes at the cost of expressiveness. We propose a solution which divides computation into two streams. A slow stream that is recurrent in nature aims to learn a specialized and compressed representation, by forcing chunks of $K$ time steps into a single representation which is divided into multiple vectors. At the same time, a fast stream is parameterized as a Transformer to process chunks consisting of $K$ time-steps conditioned on the information in the slow-stream. In the proposed approach we hope to gain the expressiveness of the Transformer, while encouraging better compression and structuring of representations in the slow stream. We show the benefits of the proposed method in terms of improved sample efficiency and generalization performance as compared to various competitive baselines for visual perception and sequential decision making tasks.
Remarkable performance from Transformer networks in Natural Language Processing promote the development of these models in dealing with computer vision tasks such as image recognition and segmentation. In this paper, we introduce a novel framework, called Multi-level Multi-scale Point Transformer (MLMSPT) that works directly on the irregular point clouds for representation learning. Specifically, a point pyramid transformer is investigated to model features with diverse resolutions or scales we defined, followed by a multi-level transformer module to aggregate contextual information from different levels of each scale and enhance their interactions. While a multi-scale transformer module is designed to capture the dependencies among representations across different scales. Extensive evaluation on public benchmark datasets demonstrate the effectiveness and the competitive performance of our methods on 3D shape classification, segmentation tasks.
In this paper, we focus on unsupervised learning for Video Object Segmentation (VOS) which learns visual correspondence (i.e., the similarity between pixel-level features) from unlabeled videos. Previous methods are mainly based on the contrastive learning paradigm, which optimize either in image level or pixel level. Image-level optimization (e.g., the spatially pooled feature of ResNet) learns robust high-level semantics but is sub-optimal since the pixel-level features are optimized implicitly. By contrast, pixel-level optimization is more explicit, however, it is sensitive to the visual quality of training data and is not robust to object deformation. To complementarily perform these two levels of optimization in a unified framework, we propose the In-aNd-Out (INO) generative learning from a purely generative perspective with the help of naturally designed class tokens and patch tokens in Vision Transformer (ViT). Specifically, for image-level optimization, we force the out-view imagination from local to global views on class tokens, which helps capture high-level semantics, and we name it as out-generative learning. As to pixel-level optimization, we perform in-view masked image modeling on patch tokens, which recovers the corrupted parts of an image via inferring its fine-grained structure, and we term it as in-generative learning. To discover the temporal information better, we additionally force the inter-frame consistency from both feature and affinity matrix levels. Extensive experiments on DAVIS-2017 val and YouTube-VOS 2018 val show that our INO outperforms previous state-of-the-art methods by significant margins. Code is available: //github.com/pansanity666/INO_VOS
Semantic segmentation for robotic systems can enable a wide range of applications, from self-driving cars and augmented reality systems to domestic robots. We argue that a spherical representation is a natural one for egocentric pointclouds. Thus, in this work, we present a novel framework exploiting such a representation of LiDAR pointclouds for the task of semantic segmentation. Our approach is based on a spherical convolutional neural network that can seamlessly handle observations from various sensor systems (e.g., different LiDAR systems) and provides an accurate segmentation of the environment. We operate in two distinct stages: First, we encode the projected input pointclouds to spherical features. Second, we decode and back-project the spherical features to achieve an accurate semantic segmentation of the pointcloud. We evaluate our method with respect to state-of-the-art projection-based semantic segmentation approaches using well-known public datasets. We demonstrate that the spherical representation enables us to provide more accurate segmentation and to have a better generalization to sensors with different field-of-view and number of beams than what was seen during training.
U-Net and its extended segmentation model have achieved great success in medical image segmentation tasks. However, due to the inherent local characteristics of ordinary convolution operations, the encoder cannot effectively extract the global context information. In addition, simple skip connection cannot capture salient features. In this work, we propose a full convolutional segmentation network (CMU-Net) which incorporate hybrid convolution and multi-scale attention gate. The ConvMixer module is to mix distant spatial locations for extracting the global context information. Moreover, the multi-scale attention gate can help to emphasize valuable features and achieve efficient skip connections. Evaluations on open-source breast ultrasound images and private thyroid ultrasound image datasets show that CMU-Net achieves an average IOU of 73.27% and 84.75%, F1-value is 84.16% and 91.71%. The code is available at //github.com/FengheTan9/CMU-Net.
Unsupervised image segmentation is an important task in many real-world scenarios where labelled data is of scarce availability. In this paper we propose a novel approach that harnesses recent advances in unsupervised learning using a combination of Mutual Information Maximization (MIM), Neural Superpixel Segmentation and Graph Neural Networks (GNNs) in an end-to-end manner, an approach that has not been explored yet. We take advantage of the compact representation of superpixels and combine it with GNNs in order to learn strong and semantically meaningful representations of images. Specifically, we show that our GNN based approach allows to model interactions between distant pixels in the image and serves as a strong prior to existing CNNs for an improved accuracy. Our experiments reveal both the qualitative and quantitative advantages of our approach compared to current state-of-the-art methods over four popular datasets.
This paper introduces a new fundamental characteristic, \ie, the dynamic range, from real-world metric tools to deep visual recognition. In metrology, the dynamic range is a basic quality of a metric tool, indicating its flexibility to accommodate various scales. Larger dynamic range offers higher flexibility. In visual recognition, the multiple scale problem also exist. Different visual concepts may have different semantic scales. For example, ``Animal'' and ``Plants'' have a large semantic scale while ``Elk'' has a much smaller one. Under a small semantic scale, two different elks may look quite \emph{different} to each other . However, under a large semantic scale (\eg, animals and plants), these two elks should be measured as being \emph{similar}. %We argue that such flexibility is also important for deep metric learning, because different visual concepts indeed correspond to different semantic scales. Introducing the dynamic range to deep metric learning, we get a novel computer vision task, \ie, the Dynamic Metric Learning. It aims to learn a scalable metric space to accommodate visual concepts across multiple semantic scales. Based on three types of images, \emph{i.e.}, vehicle, animal and online products, we construct three datasets for Dynamic Metric Learning. We benchmark these datasets with popular deep metric learning methods and find Dynamic Metric Learning to be very challenging. The major difficulty lies in a conflict between different scales: the discriminative ability under a small scale usually compromises the discriminative ability under a large one, and vice versa. As a minor contribution, we propose Cross-Scale Learning (CSL) to alleviate such conflict. We show that CSL consistently improves the baseline on all the three datasets. The datasets and the code will be publicly available at //github.com/SupetZYK/DynamicMetricLearning.
Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.
We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.
Deep neural network architectures have traditionally been designed and explored with human expertise in a long-lasting trial-and-error process. This process requires huge amount of time, expertise, and resources. To address this tedious problem, we propose a novel algorithm to optimally find hyperparameters of a deep network architecture automatically. We specifically focus on designing neural architectures for medical image segmentation task. Our proposed method is based on a policy gradient reinforcement learning for which the reward function is assigned a segmentation evaluation utility (i.e., dice index). We show the efficacy of the proposed method with its low computational cost in comparison with the state-of-the-art medical image segmentation networks. We also present a new architecture design, a densely connected encoder-decoder CNN, as a strong baseline architecture to apply the proposed hyperparameter search algorithm. We apply the proposed algorithm to each layer of the baseline architectures. As an application, we train the proposed system on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017. Starting from a baseline segmentation architecture, the resulting network architecture obtains the state-of-the-art results in accuracy without performing any trial-and-error based architecture design approaches or close supervision of the hyperparameters changes.