亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present task-oriented Koopman-based control that utilizes end-to-end reinforcement learning and contrastive encoder to simultaneously learn the Koopman latent embedding, operator, and associated linear controller within an iterative loop. By prioritizing the task cost as the main objective for controller learning, we reduce the reliance of controller design on a well-identified model, which, for the first time to the best of our knowledge, extends Koopman control from low to high-dimensional, complex nonlinear systems, including pixel-based tasks and a real robot with lidar observations. Code and videos are available \href{//sites.google.com/view/kpmlilatsupp/}{here}.

相關內容

We propose a method that allows for learning task-agnostic representations based on value function estimates from a sequence of observations where the last frame corresponds to a goal. These representations would learn to relate states across different tasks, based on the temporal distance to the goal state, irrespective of the appearance changes and dynamics. This method could be used to transfer learnt policies/skills to unseen related tasks.

While decentralized training is attractive in multi-agent reinforcement learning (MARL) for its excellent scalability and robustness, its inherent coordination challenges in collaborative tasks result in numerous interactions for agents to learn good policies. To alleviate this problem, action advising methods make experienced agents share their knowledge about what to do, while less experienced agents strictly follow the received advice. However, this method of sharing and utilizing knowledge may hinder the team's exploration of better states, as agents can be unduly influenced by suboptimal or even adverse advice, especially in the early stages of learning. Inspired by the fact that humans can learn not only from the success but also from the failure of others, this paper proposes a novel knowledge sharing framework called Cautiously-Optimistic kNowledge Sharing (CONS). CONS enables each agent to share both positive and negative knowledge and cautiously assimilate knowledge from others, thereby enhancing the efficiency of early-stage exploration and the agents' robustness to adverse advice. Moreover, considering the continuous improvement of policies, agents value negative knowledge more in the early stages of learning and shift their focus to positive knowledge in the later stages. Our framework can be easily integrated into existing Q-learning based methods without introducing additional training costs. We evaluate CONS in several challenging multi-agent tasks and find it excels in environments where optimal behavioral patterns are difficult to discover, surpassing the baselines in terms of convergence rate and final performance.

This study introduces an innovative framework designed to automate tasks by interacting with UIs through a sequential, human-like problem-solving approach. Our approach initially transforms UI screenshots into natural language explanations through a vision-based UI analysis, circumventing traditional view hierarchy limitations. It then methodically engages with each interface, guiding the LLM to pinpoint and act on relevant UI elements, thus bolstering both precision and functionality. Employing the ERNIE Bot LLM, our approach has been demonstrated to surpass existing methodologies. It delivers superior UI interpretation across various datasets and exhibits remarkable efficiency in automating varied tasks on an Android smartphone, outperforming human capabilities in intricate tasks and significantly enhancing the PBD process.

Communication in multi-agent reinforcement learning (MARL) has been proven to effectively promote cooperation among agents recently. Since communication in real-world scenarios is vulnerable to noises and adversarial attacks, it is crucial to develop robust communicative MARL technique. However, existing research in this domain has predominantly focused on passive defense strategies, where agents receive all messages equally, making it hard to balance performance and robustness. We propose an active defense strategy, where agents automatically reduce the impact of potentially harmful messages on the final decision. There are two challenges to implement this strategy, that are defining unreliable messages and adjusting the unreliable messages' impact on the final decision properly. To address them, we design an Active Defense Multi-Agent Communication framework (ADMAC), which estimates the reliability of received messages and adjusts their impact on the final decision accordingly with the help of a decomposable decision structure. The superiority of ADMAC over existing methods is validated by experiments in three communication-critical tasks under four types of attacks.

Recent advances in learning techniques have garnered attention for their applicability to a diverse range of real-world sequential decision-making problems. Yet, many practical applications have critical constraints for operation in real environments. Most learning solutions often neglect the risk of failing to meet these constraints, hindering their implementation in real-world contexts. In this paper, we propose a risk-aware decision-making framework for contextual bandit problems, accommodating constraints and continuous action spaces. Our approach employs an actor multi-critic architecture, with each critic characterizing the distribution of performance and constraint metrics. Our framework is designed to cater to various risk levels, effectively balancing constraint satisfaction against performance. To demonstrate the effectiveness of our approach, we first compare it against state-of-the-art baseline methods in a synthetic environment, highlighting the impact of intrinsic environmental noise across different risk configurations. Finally, we evaluate our framework in a real-world use case involving a 5G mobile network where only our approach consistently satisfies the system constraint (a signal processing reliability target) with a small performance toll (8.5% increase in power consumption).

A single language model (LM), despite aligning well with an average labeler through reinforcement learning from human feedback (RLHF), may not universally suit diverse human preferences. Recent approaches therefore opt for customization by collecting multi-dimensional feedback and creating distinct reward models (RMs) for each dimension (e.g., helpfulness, harmlessness, or honesty). Different LMs can then be optimized for different preferences using multi-objective RLHF (MORLHF) with different reward weightings. Yet, RL fine-tuning is unstable and resource-heavy, especially for MORLHF with diverse and usually conflicting objectives. In this paper, we present Multi-Objective Direct Preference Optimization (MODPO), an RL-free algorithm that extends Direct Preference Optimization (DPO) for multiple alignment objectives with minimal overheads. Essentially, MODPO folds language modeling directly into reward modeling, training LMs as implicit collective reward models (cRMs) that combine all objectives with specific weightings. While theoretically guaranteed to produce the same optimal solutions as MORLHF, MODPO is practically more stable and computationally efficient. Empirical results from safety alignment and long-form question answering confirm that MODPO matches or outperforms existing methods, consistently producing a Pareto front of LMs that cater to diverse preferences with 3 times less computational resources compared to MORLHF.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

Existing methods for vision-and-language learning typically require designing task-specific architectures and objectives for each task. For example, a multi-label answer classifier for visual question answering, a region scorer for referring expression comprehension, and a language decoder for image captioning, etc. To alleviate these hassles, in this work, we propose a unified framework that learns different tasks in a single architecture with the same language modeling objective, i.e., multimodal conditional text generation, where our models learn to generate labels in text based on the visual and textual inputs. On 7 popular vision-and-language benchmarks, including visual question answering, referring expression comprehension, visual commonsense reasoning, most of which have been previously modeled as discriminative tasks, our generative approach (with a single unified architecture) reaches comparable performance to recent task-specific state-of-the-art vision-and-language models. Moreover, our generative approach shows better generalization ability on answering questions that have rare answers. In addition, we show that our framework allows multi-task learning in a single architecture with a single set of parameters, which achieves similar performance to separately optimized single-task models. Our code will be publicly available at: //github.com/j-min/VL-T5

This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司