Urban flood risk emerges from complex and nonlinear interactions among multiple features related to flood hazard, flood exposure, and social and physical vulnerabilities, along with the complex spatial flood dependence relationships. Existing approaches for characterizing urban flood risk, however, are primarily based on flood plain maps, focusing on a limited number of features, primarily hazard and exposure features, without consideration of feature interactions or the dependence relationships among spatial areas. To address this gap, this study presents an integrated urban flood-risk rating model based on a novel unsupervised graph deep learning model (called FloodRisk-Net). FloodRisk-Net is capable of capturing spatial dependence among areas and complex and nonlinear interactions among flood hazards and urban features for specifying emergent flood risk. Using data from multiple metropolitan statistical areas (MSAs) in the United States, the model characterizes their flood risk into six distinct city-specific levels. The model is interpretable and enables feature analysis of areas within each flood-risk level, allowing for the identification of the three archetypes shaping the highest flood risk within each MSA. Flood risk is found to be spatially distributed in a hierarchical structure within each MSA, where the core city disproportionately bears the highest flood risk. Multiple cities are found to have high overall flood-risk levels and low spatial inequality, indicating limited options for balancing urban development and flood-risk reduction. Relevant flood-risk reduction strategies are discussed considering ways that the highest flood risk and uneven spatial distribution of flood risk are formed.
We develop a distributed Block Chebyshev-Davidson algorithm to solve large-scale leading eigenvalue problems for spectral analysis in spectral clustering. First, the efficiency of the Chebyshev-Davidson algorithm relies on the prior knowledge of the eigenvalue spectrum, which could be expensive to estimate. This issue can be lessened by the analytic spectrum estimation of the Laplacian or normalized Laplacian matrices in spectral clustering, making the proposed algorithm very efficient for spectral clustering. Second, to make the proposed algorithm capable of analyzing big data, a distributed and parallel version has been developed with attractive scalability. The speedup by parallel computing is approximately equivalent to $\sqrt{p}$, where $p$ denotes the number of processes. {Numerical results will be provided to demonstrate its efficiency in spectral clustering and scalability advantage over existing eigensolvers used for spectral clustering in parallel computing environments.}
sEMG pattern recognition algorithms have been explored extensively in decoding movement intent, yet are known to be vulnerable to changing recording conditions, exhibiting significant drops in performance across subjects, and even across sessions. Multi-channel surface EMG, also referred to as high-density sEMG (HD-sEMG) systems, have been used to improve performance with the information collected through the use of additional electrodes. However, a lack of robustness is ever present due to limited datasets and the difficulties in addressing sources of variability, such as electrode placement. In this study, we propose training on a collection of input channel subsets and augmenting our training distribution with data from different electrode locations, simultaneously targeting electrode shift and reducing input dimensionality. Our method increases robustness against electrode shift and results in significantly higher intersession performance across subjects and classification algorithms.
The designing of efficient signal detectors is important and yet challenge for orthogonal time frequency space (OTFS) systems in high-mobility scenarios. In this letter, we develop an efficient message feedback interference cancellation aided unitary approximate message passing (denoted as UAMPMFIC) iterative detector, where the latest feedback messages from variable nodes are utilized for more reliable interference cancellation and performance improvement. A fast recursive scheme is leveraged in the proposed UAMP-MFIC detector to prevent complexity increasing. To further alleviate the error-propagation and improve the receiver performance, we also develop the bidirectional symbol detection structures, where Turbo UAMP-MFIC detector and iterative weight UAMP-MFIC detector are proposed to efficiently fuse the estimation results of forward and backward UAMP-MFIC detectors. The simulation results are finally provided to demonstrate performance improvement of our proposed detectors over existing detectors.
In order to further advance the accuracy and robustness of the incremental parameter estimation-based rotation averaging methods, in this paper, a new member of the Incremental Rotation Averaging (IRA) family is introduced, which is termed as IRAv4. As the most significant feature of the IRAv4, a task-specific connected dominating set is extracted to serve as a more reliable and accurate reference for rotation global alignment. In addition, to further address the limitations of the existing rotation averaging benchmark of relying on the slightly outdated Bundler camera calibration results as ground truths and focusing solely on rotation estimation accuracy, this paper presents a new COLMAP-based rotation averaging benchmark that incorporates a cross check between COLMAP and Bundler, and employ the accuracy of both rotation and downstream location estimation as evaluation metrics, which is desired to provide a more reliable and comprehensive evaluation tool for the rotation averaging research. Comprehensive comparisons between the proposed IRAv4 and other mainstream rotation averaging methods on this new benchmark demonstrate the effectiveness of our proposed approach.
Car detection is an important task that serves as a crucial prerequisite for many automated driving functions. The large variations in lighting/weather conditions and vehicle densities of the scenes pose significant challenges to existing car detection algorithms to meet the highly accurate perception demand for safety, due to the unstable/limited color information, which impedes the extraction of meaningful/discriminative features of cars. In this work, we present a novel learning-based car detection method that leverages trichromatic linear polarization as an additional cue to disambiguate such challenging cases. A key observation is that polarization, characteristic of the light wave, can robustly describe intrinsic physical properties of the scene objects in various imaging conditions and is strongly linked to the nature of materials for cars (e.g., metal and glass) and their surrounding environment (e.g., soil and trees), thereby providing reliable and discriminative features for robust car detection in challenging scenes. To exploit polarization cues, we first construct a pixel-aligned RGB-Polarization car detection dataset, which we subsequently employ to train a novel multimodal fusion network. Our car detection network dynamically integrates RGB and polarization features in a request-and-complement manner and can explore the intrinsic material properties of cars across all learning samples. We extensively validate our method and demonstrate that it outperforms state-of-the-art detection methods. Experimental results show that polarization is a powerful cue for car detection.
Semantic segmentation methods have advanced significantly. Still, their robustness to real-world perturbations and object types not seen during training remains a challenge, particularly in safety-critical applications. We propose a novel approach to improve the robustness of semantic segmentation techniques by leveraging the synergy between label-to-image generators and image-to-label segmentation models. Specifically, we design Robusta, a novel robust conditional generative adversarial network to generate realistic and plausible perturbed images that can be used to train reliable segmentation models. We conduct in-depth studies of the proposed generative model, assess the performance and robustness of the downstream segmentation network, and demonstrate that our approach can significantly enhance the robustness in the face of real-world perturbations, distribution shifts, and out-of-distribution samples. Our results suggest that this approach could be valuable in safety-critical applications, where the reliability of perception modules such as semantic segmentation is of utmost importance and comes with a limited computational budget in inference. We release our code at //github.com/ENSTA-U2IS/robusta.
Programs involving discontinuities introduced by control flow constructs such as conditional branches pose challenges to mathematical optimization methods that assume a degree of smoothness in the objective function's response surface. Smooth interpretation (SI) is a form of abstract interpretation that approximates the convolution of a program's output with a Gaussian kernel, thus smoothing its output in a principled manner. Here, we combine SI with automatic differentiation (AD) to efficiently compute gradients of smoothed programs. In contrast to AD across a regular program execution, these gradients also capture the effects of alternative control flow paths. The combination of SI with AD enables the direct gradient-based parameter synthesis for branching programs, allowing for instance the calibration of simulation models or their combination with neural network models in machine learning pipelines. We detail the effects of the approximations made for tractability in SI and propose a novel Monte Carlo estimator that avoids the underlying assumptions by estimating the smoothed programs' gradients through a combination of AD and sampling. Using DiscoGrad, our tool for automatically translating simple C++ programs to a smooth differentiable form, we perform an extensive evaluation. We compare the combination of SI with AD and our Monte Carlo estimator to existing gradient-free and stochastic methods on four non-trivial and originally discontinuous problems ranging from classical simulation-based optimization to neural network-driven control. While the optimization progress with the SI-based estimator depends on the complexity of the program's control flow, our Monte Carlo estimator is competitive in all problems, exhibiting the fastest convergence by a substantial margin in our highest-dimensional problem.
We introduce a new class of hybrid preconditioners for solving parametric linear systems of equations. The proposed preconditioners are constructed by hybridizing the deep operator network, namely DeepONet, with standard iterative methods. Exploiting the spectral bias, DeepONet-based components are harnessed to address low-frequency error components, while conventional iterative methods are employed to mitigate high-frequency error components. Our preconditioning framework comprises two distinct hybridization approaches: direct preconditioning (DP) and trunk basis (TB) approaches. In the DP approach, DeepONet is used to approximate an action of an inverse operator to a vector during each preconditioning step. In contrast, the TB approach extracts basis functions from the trained DeepONet to construct a map to a smaller subspace, in which the low-frequency component of the error can be effectively eliminated. Our numerical results demonstrate that utilizing the TB approach enhances the convergence of Krylov methods by a large margin compared to standard non-hybrid preconditioning strategies. Moreover, the proposed hybrid preconditioners exhibit robustness across a wide range of model parameters and problem resolutions.
Many biological processes display oscillatory behavior based on an approximately 24 hour internal timing system specific to each individual. One process of particular interest is gene expression, for which several circadian transcriptomic studies have identified associations between gene expression during a 24 hour period and an individual's health. A challenge with analyzing data from these studies is that each individual's internal timing system is offset relative to the 24 hour day-night cycle, where day-night cycle time is recorded for each collected sample. Laboratory procedures can accurately determine each individual's offset and determine the internal time of sample collection. However, these laboratory procedures are labor-intensive and expensive. In this paper, we propose a corrected score function framework to obtain a regression model of gene expression given internal time when the offset of each individual is too burdensome to determine. A feature of this framework is that it does not require the probability distribution generating offsets to be symmetric with a mean of zero. Simulation studies validate the use of this corrected score function framework for cosinor regression, which is prevalent in circadian transcriptomic studies. Illustrations with three real circadian transcriptomic data sets further demonstrate that the proposed framework consistently mitigates bias relative to using a score function that does not account for this offset.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.