Adaptive gradient methods have shown excellent performances for solving many machine learning problems. Although multiple adaptive methods were recently studied, they mainly focus on either empirical or theoretical aspects and also only work for specific problems by using some specific adaptive learning rates. It is desired to design a universal framework for practical algorithms of adaptive gradients with theoretical guarantee to solve general problems. To fill this gap, we propose a faster and universal framework of adaptive gradients (i.e., SUPER-ADAM) by introducing a universal adaptive matrix that includes most existing adaptive gradient forms. Moreover, our framework can flexibly integrate the momentum and variance reduced techniques. In particular, our novel framework provides the convergence analysis support for adaptive gradient methods under the nonconvex setting. In theoretical analysis, we prove that our SUPER-ADAM algorithm can achieve the best known gradient (i.e., stochastic first-order oracle (SFO)) complexity of $\tilde{O}(\epsilon^{-3})$ for finding an $\epsilon$-stationary point of nonconvex optimization, which matches the lower bound for stochastic smooth nonconvex optimization. In numerical experiments, we employ various deep learning tasks to validate that our algorithm consistently outperforms the existing adaptive algorithms. Code is available at //github.com/LIJUNYI95/SuperAdam
Natural policy gradient (NPG) methods with entropy regularization achieve impressive empirical success in reinforcement learning problems with large state-action spaces. However, their convergence properties and the impact of entropy regularization remain elusive in the function approximation regime. In this paper, we establish finite-time convergence analyses of entropy-regularized NPG with linear function approximation under softmax parameterization. In particular, we prove that entropy-regularized NPG with averaging satisfies the \emph{persistence of excitation} condition, and achieves a fast convergence rate of $\tilde{O}(1/T)$ up to a function approximation error in regularized Markov decision processes. This convergence result does not require any a priori assumptions on the policies. Furthermore, under mild regularity conditions on the concentrability coefficient and basis vectors, we prove that entropy-regularized NPG exhibits \emph{linear convergence} up to a function approximation error.
We present a faster interior-point method for optimizing sum-of-squares (SOS) polynomials, which are a central tool in polynomial optimization and capture convex programming in the Lasserre hierarchy. Let $p = \sum_i q^2_i$ be an $n$-variate SOS polynomial of degree $2d$. Denoting by $L := \binom{n+d}{d}$ and $U := \binom{n+2d}{2d}$ the dimensions of the vector spaces in which $q_i$'s and $p$ live respectively, our algorithm runs in time $\tilde{O}(LU^{1.87})$. This is polynomially faster than state-of-art SOS and semidefinite programming solvers, which achieve runtime $\tilde{O}(L^{0.5}\min\{U^{2.37}, L^{4.24}\})$. The centerpiece of our algorithm is a dynamic data structure for maintaining the inverse of the Hessian of the SOS barrier function under the polynomial interpolant basis, which efficiently extends to multivariate SOS optimization, and requires maintaining spectral approximations to low-rank perturbations of elementwise (Hadamard) products. This is the main challenge and departure from recent IPM breakthroughs using inverse-maintenance, where low-rank updates to the slack matrix readily imply the same for the Hessian matrix.
We initiate the study of parameterized complexity of $\textsf{QMA}$ problems in terms of the number of non-Clifford gates in the problem description. We show that for the problem of parameterized quantum circuit satisfiability, there exists a classical algorithm solving the problem with a runtime scaling exponentially in the number of non-Clifford gates but only polynomially with the system size. This result follows from our main result, that for any Clifford + $t$ $T$-gate quantum circuit satisfiability problem, the search space of optimal witnesses can be reduced to a stabilizer subspace isomorphic to at most $t$ qubits (independent of the system size). Furthermore, we derive new lower bounds on the $T$-count of circuit satisfiability instances and the $T$-count of the $W$-state assuming the classical exponential time hypothesis ($\textsf{ETH}$). Lastly, we explore the parameterized complexity of the quantum non-identity check problem.
We describe how to approximate the intractable marginal likelihood that arises when fitting generalized linear mixed models. We prove that non-adaptive quadrature approximations yield high error asymptotically in every statistical model satisfying weak regularity conditions. We derive the rate of error incurred when using adaptive quadrature to approximate the marginal likelihood in a broad class of generalized linear mixed models, which includes non-exponential family response and non-Gaussian random effects distributions. We provide an explicit recommendation for how many quadrature points to use, and show that this recommendation recovers and explains many empirical results from published simulation studies and data analyses. Particular attention is paid to models for dependent binary and survival/time-to-event observations. Code to reproduce results in the manuscript is found at //github.com/awstringer1/glmm-aq-paper-code.
We consider universal approximations of symmetric and anti-symmetric functions, which are important for applications in quantum physics, as well as other scientific and engineering computations. We give constructive approximations with explicit bounds on the number of parameters with respect to the dimension and the target accuracy $\epsilon$. While the approximation still suffers from the curse of dimensionality, to the best of our knowledge, these are the first results in the literature with explicit error bounds for functions with symmetry or anti-symmetry constraints.
Despite their overwhelming capacity to overfit, deep neural networks trained by specific optimization algorithms tend to generalize well to unseen data. Recently, researchers explained it by investigating the implicit regularization effect of optimization algorithms. A remarkable progress is the work (Lyu&Li, 2019), which proves gradient descent (GD) maximizes the margin of homogeneous deep neural networks. Except GD, adaptive algorithms such as AdaGrad, RMSProp and Adam are popular owing to their rapid training process. However, theoretical guarantee for the generalization of adaptive optimization algorithms is still lacking. In this paper, we study the implicit regularization of adaptive optimization algorithms when they are optimizing the logistic loss on homogeneous deep neural networks. We prove that adaptive algorithms that adopt exponential moving average strategy in conditioner (such as Adam and RMSProp) can maximize the margin of the neural network, while AdaGrad that directly sums historical squared gradients in conditioner can not. It indicates superiority on generalization of exponential moving average strategy in the design of the conditioner. Technically, we provide a unified framework to analyze convergent direction of adaptive optimization algorithms by constructing novel adaptive gradient flow and surrogate margin. Our experiments can well support the theoretical findings on convergent direction of adaptive optimization algorithms.
Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods.
In many important graph data processing applications the acquired information includes both node features and observations of the graph topology. Graph neural networks (GNNs) are designed to exploit both sources of evidence but they do not optimally trade-off their utility and integrate them in a manner that is also universal. Here, universality refers to independence on homophily or heterophily graph assumptions. We address these issues by introducing a new Generalized PageRank (GPR) GNN architecture that adaptively learns the GPR weights so as to jointly optimize node feature and topological information extraction, regardless of the extent to which the node labels are homophilic or heterophilic. Learned GPR weights automatically adjust to the node label pattern, irrelevant on the type of initialization, and thereby guarantee excellent learning performance for label patterns that are usually hard to handle. Furthermore, they allow one to avoid feature over-smoothing, a process which renders feature information nondiscriminative, without requiring the network to be shallow. Our accompanying theoretical analysis of the GPR-GNN method is facilitated by novel synthetic benchmark datasets generated by the so-called contextual stochastic block model. We also compare the performance of our GNN architecture with that of several state-of-the-art GNNs on the problem of node-classification, using well-known benchmark homophilic and heterophilic datasets. The results demonstrate that GPR-GNN offers significant performance improvement compared to existing techniques on both synthetic and benchmark data.
Recurrent neural networks (RNNs) sequentially process data by updating their state with each new data point, and have long been the de facto choice for sequence modeling tasks. However, their inherently sequential computation makes them slow to train. Feed-forward and convolutional architectures have recently been shown to achieve superior results on some sequence modeling tasks such as machine translation, with the added advantage that they concurrently process all inputs in the sequence, leading to easy parallelization and faster training times. Despite these successes, however, popular feed-forward sequence models like the Transformer fail to generalize in many simple tasks that recurrent models handle with ease, e.g. copying strings or even simple logical inference when the string or formula lengths exceed those observed at training time. We propose the Universal Transformer (UT), a parallel-in-time self-attentive recurrent sequence model which can be cast as a generalization of the Transformer model and which addresses these issues. UTs combine the parallelizability and global receptive field of feed-forward sequence models like the Transformer with the recurrent inductive bias of RNNs. We also add a dynamic per-position halting mechanism and find that it improves accuracy on several tasks. In contrast to the standard Transformer, under certain assumptions, UTs can be shown to be Turing-complete. Our experiments show that UTs outperform standard Transformers on a wide range of algorithmic and language understanding tasks, including the challenging LAMBADA language modeling task where UTs achieve a new state of the art, and machine translation where UTs achieve a 0.9 BLEU improvement over Transformers on the WMT14 En-De dataset.
Asynchronous momentum stochastic gradient descent algorithms (Async-MSGD) is one of the most popular algorithms in distributed machine learning. However, its convergence properties for these complicated nonconvex problems is still largely unknown, because of the current technical limit. Therefore, in this paper, we propose to analyze the algorithm through a simpler but nontrivial nonconvex problem - streaming PCA, which helps us to understand Aync-MSGD better even for more general problems. Specifically, we establish the asymptotic rate of convergence of Async-MSGD for streaming PCA by diffusion approximation. Our results indicate a fundamental tradeoff between asynchrony and momentum: To ensure convergence and acceleration through asynchrony, we have to reduce the momentum (compared with Sync-MSGD). To the best of our knowledge, this is the first theoretical attempt on understanding Async-MSGD for distributed nonconvex stochastic optimization. Numerical experiments on both streaming PCA and training deep neural networks are provided to support our findings for Async-MSGD.