Trajectory prediction is essential for autonomous vehicles (AVs) to plan correct and safe driving behaviors. While many prior works aim to achieve higher prediction accuracy, few study the adversarial robustness of their methods. To bridge this gap, we propose to study the adversarial robustness of data-driven trajectory prediction systems. We devise an optimization-based adversarial attack framework that leverages a carefully-designed differentiable dynamic model to generate realistic adversarial trajectories. Empirically, we benchmark the adversarial robustness of state-of-the-art prediction models and show that our attack increases the prediction error for both general metrics and planning-aware metrics by more than 50% and 37%. We also show that our attack can lead an AV to drive off road or collide into other vehicles in simulation. Finally, we demonstrate how to mitigate the adversarial attacks using an adversarial training scheme.
Pixel-wise predction with deep neural network has become an effective paradigm for salient object detection (SOD) and achieved remakable performance. However, very few SOD models are robust against adversarial attacks which are visually imperceptible for human visual attention. The previous work robust salient object detection against adversarial attacks (ROSA) shuffles the pre-segmented superpixels and then refines the coarse saliency map by the densely connected CRF. Different from ROSA that rely on various pre- and post-processings, this paper proposes a light-weight Learnble Noise (LeNo) to against adversarial attacks for SOD models. LeNo preserves accuracy of SOD models on both adversarial and clean images, as well as inference speed. In general, LeNo consists of a simple shallow noise and noise estimation that embedded in the encoder and decoder of arbitrary SOD networks respectively. Inspired by the center prior of human visual attention mechanism, we initialize the shallow noise with a cross-shaped gaussian distribution for better defense against adversarial attacks. Instead of adding additional network components for post-processing, the proposed noise estimation modifies only one channel of the decoder. With the deeply-supervised noise-decoupled training on state-of-the-art RGB and RGB-D SOD networks, LeNo outperforms previous works not only on adversarial images but also clean images, which contributes stronger robustness for SOD.
3D deep learning models are shown to be as vulnerable to adversarial examples as 2D models. However, existing attack methods are still far from stealthy and suffer from severe performance degradation in the physical world. Although 3D data is highly structured, it is difficult to bound the perturbations with simple metrics in the Euclidean space. In this paper, we propose a novel $\epsilon$-isometric ($\epsilon$-ISO) attack to generate natural and robust 3D adversarial examples in the physical world by considering the geometric properties of 3D objects and the invariance to physical transformations. For naturalness, we constrain the adversarial example to be $\epsilon$-isometric to the original one by adopting the Gaussian curvature as a surrogate metric guaranteed by a theoretical analysis. For invariance to physical transformations, we propose a maxima over transformation (MaxOT) method that actively searches for the most harmful transformations rather than random ones to make the generated adversarial example more robust in the physical world. Experiments on typical point cloud recognition models validate that our approach can significantly improve the attack success rate and naturalness of the generated 3D adversarial examples than the state-of-the-art attack methods.
Deep Neural Networks are vulnerable to adversarial attacks. Among many defense strategies, adversarial training with untargeted attacks is one of the most recognized methods. Theoretically, the predicted labels of untargeted attacks should be unpredictable and uniformly-distributed overall false classes. However, we find that the naturally imbalanced inter-class semantic similarity makes those hard-class pairs to become the virtual targets of each other. This study investigates the impact of such closely-coupled classes on adversarial attacks and develops a self-paced reweighting strategy in adversarial training accordingly. Specifically, we propose to upweight hard-class pair loss in model optimization, which prompts learning discriminative features from hard classes. We further incorporate a term to quantify hard-class pair consistency in adversarial training, which greatly boost model robustness. Extensive experiments show that the proposed adversarial training method achieves superior robustness performance over state-of-the-art defenses against a wide range of adversarial attacks.
Recent research has shown that Machine Learning/Deep Learning (ML/DL) models are particularly vulnerable to adversarial perturbations, which are small changes made to the input data in order to fool a machine learning classifier. The Digital Twin, which is typically described as consisting of a physical entity, a virtual counterpart, and the data connections in between, is increasingly being investigated as a means of improving the performance of physical entities by leveraging computational techniques, which are enabled by the virtual counterpart. This paper explores the susceptibility of Digital Twin (DT), a virtual model designed to accurately reflect a physical object using ML/DL classifiers that operate as Cyber Physical Systems (CPS), to adversarial attacks. As a proof of concept, we first formulate a DT of a vehicular system using a deep neural network architecture and then utilize it to launch an adversarial attack. We attack the DT model by perturbing the input to the trained model and show how easily the model can be broken with white-box attacks.
Existing literature on adversarial Machine Learning (ML) focuses either on showing attacks that break every ML model, or defenses that withstand most attacks. Unfortunately, little consideration is given to the actual \textit{cost} of the attack or the defense. Moreover, adversarial samples are often crafted in the "feature-space", making the corresponding evaluations of questionable value. Simply put, the current situation does not allow to estimate the actual threat posed by adversarial attacks, leading to a lack of secure ML systems. We aim to clarify such confusion in this paper. By considering the application of ML for Phishing Website Detection (PWD), we formalize the "evasion-space" in which an adversarial perturbation can be introduced to fool a ML-PWD -- demonstrating that even perturbations in the "feature-space" are useful. Then, we propose a realistic threat model describing evasion attacks against ML-PWD that are cheap to stage, and hence intrinsically more attractive for real phishers. Finally, we perform the first statistically validated assessment of state-of-the-art ML-PWD against 12 evasion attacks. Our evaluation shows (i) the true efficacy of evasion attempts that are more likely to occur; and (ii) the impact of perturbations crafted in different evasion-spaces. Our realistic evasion attempts induce a statistically significant degradation (3-10% at $p\!<$0.05), and their cheap cost makes them a subtle threat. Notably, however, some ML-PWD are immune to our most realistic attacks ($p$=0.22). Our contribution paves the way for a much needed re-assessment of adversarial attacks against ML systems for cybersecurity.
The existence of adversarial examples brings huge concern for people to apply Deep Neural Networks (DNNs) in safety-critical tasks. However, how to generate adversarial examples with categorical data is an important problem but lack of extensive exploration. Previously established methods leverage greedy search method, which can be very time-consuming to conduct successful attack. This also limits the development of adversarial training and potential defenses for categorical data. To tackle this problem, we propose Probabilistic Categorical Adversarial Attack (PCAA), which transfers the discrete optimization problem to a continuous problem that can be solved efficiently by Projected Gradient Descent. In our paper, we theoretically analyze its optimality and time complexity to demonstrate its significant advantage over current greedy based attacks. Moreover, based on our attack, we propose an efficient adversarial training framework. Through a comprehensive empirical study, we justify the effectiveness of our proposed attack and defense algorithms.
Since the discovery of adversarial attacks against machine learning models nearly a decade ago, research on adversarial machine learning has rapidly evolved into an eternal war between defenders, who seek to increase the robustness of ML models against adversarial attacks, and adversaries, who seek to develop better attacks capable of weakening or defeating these defenses. This domain, however, has found little buy-in from ML practitioners, who are neither overtly concerned about these attacks affecting their systems in the real world nor are willing to trade off the accuracy of their models in pursuit of robustness against these attacks. In this paper, we motivate the design and implementation of Ares, an evaluation framework for adversarial ML that allows researchers to explore attacks and defenses in a realistic wargame-like environment. Ares frames the conflict between the attacker and defender as two agents in a reinforcement learning environment with opposing objectives. This allows the introduction of system-level evaluation metrics such as time to failure and evaluation of complex strategies such as moving target defenses. We provide the results of our initial exploration involving a white-box attacker against an adversarially trained defender.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.
There is a recent large and growing interest in generative adversarial networks (GANs), which offer powerful features for generative modeling, density estimation, and energy function learning. GANs are difficult to train and evaluate but are capable of creating amazingly realistic, though synthetic, image data. Ideas stemming from GANs such as adversarial losses are creating research opportunities for other challenges such as domain adaptation. In this paper, we look at the field of GANs with emphasis on these areas of emerging research. To provide background for adversarial techniques, we survey the field of GANs, looking at the original formulation, training variants, evaluation methods, and extensions. Then we survey recent work on transfer learning, focusing on comparing different adversarial domain adaptation methods. Finally, we take a look forward to identify open research directions for GANs and domain adaptation, including some promising applications such as sensor-based human behavior modeling.