In real-world scenarios, collected and annotated data often exhibit the characteristics of multiple classes and long-tailed distribution. Additionally, label noise is inevitable in large-scale annotations and hinders the applications of learning-based models. Although many deep learning based methods have been proposed for handling long-tailed multi-label recognition or label noise respectively, learning with noisy labels in long-tailed multi-label visual data has not been well-studied because of the complexity of long-tailed distribution entangled with multi-label correlation. To tackle such a critical yet thorny problem, this paper focuses on reducing noise based on some inherent properties of multi-label classification and long-tailed learning under noisy cases. In detail, we propose a Stitch-Up augmentation to synthesize a cleaner sample, which directly reduces multi-label noise by stitching up multiple noisy training samples. Equipped with Stitch-Up, a Heterogeneous Co-Learning framework is further designed to leverage the inconsistency between long-tailed and balanced distributions, yielding cleaner labels for more robust representation learning with noisy long-tailed data. To validate our method, we build two challenging benchmarks, named VOC-MLT-Noise and COCO-MLT-Noise, respectively. Extensive experiments are conducted to demonstrate the effectiveness of our proposed method. Compared to a variety of baselines, our method achieves superior results.
Whilst contrastive learning yields powerful representations by matching different augmented views of the same instance, it lacks the ability to capture the similarities between different instances. One popular way to address this limitation is by learning global features (after the global pooling) to capture inter-instance relationships based on knowledge distillation, where the global features of the teacher are used to guide the learning of the global features of the student. Inspired by cross-modality learning, we extend this existing framework that only learns from global features by encouraging the global features and intermediate layer features to learn from each other. This leads to our novel self-supervised framework: cross-context learning between global and hypercolumn features (CGH), that enforces the consistency of instance relations between low- and high-level semantics. Specifically, we stack the intermediate feature maps to construct a hypercolumn representation so that we can measure instance relations using two contexts (hypercolumn and global feature) separately, and then use the relations of one context to guide the learning of the other. This cross-context learning allows the model to learn from the differences between the two contexts. The experimental results on linear classification and downstream tasks show that our method outperforms the state-of-the-art methods.
We develop a novel asymptotic theory for local polynomial (quasi-) maximum-likelihood estimators of time-varying parameters in a broad class of nonlinear time series models. Under weak regularity conditions, we show the proposed estimators are consistent and follow normal distributions in large samples. Our conditions impose weaker smoothness and moment conditions on the data-generating process and its likelihood compared to existing theories. Furthermore, the bias terms of the estimators take a simpler form. We demonstrate the usefulness of our general results by applying our theory to local (quasi-)maximum-likelihood estimators of a time-varying VAR's, ARCH and GARCH, and Poisson autogressions. For the first three models, we are able to substantially weaken the conditions found in the existing literature. For the Poisson autogression, existing theories cannot be be applied while our novel approach allows us to analyze it.
Convolutional neural networks excel in histopathological image classification, yet their pixel-level focus hampers explainability. Conversely, emerging graph convolutional networks spotlight cell-level features and medical implications. However, limited by their shallowness and suboptimal use of high-dimensional pixel data, GCNs underperform in multi-class histopathological image classification. To make full use of pixel-level and cell-level features dynamically, we propose an asymmetric co-training framework combining a deep graph convolutional network and a convolutional neural network for multi-class histopathological image classification. To improve the explainability of the entire framework by embedding morphological and topological distribution of cells, we build a 14-layer deep graph convolutional network to handle cell graph data. For the further utilization and dynamic interactions between pixel-level and cell-level information, we also design a co-training strategy to integrate the two asymmetric branches. Notably, we collect a private clinically acquired dataset termed LUAD7C, including seven subtypes of lung adenocarcinoma, which is rare and more challenging. We evaluated our approach on the private LUAD7C and public colorectal cancer datasets, showcasing its superior performance, explainability, and generalizability in multi-class histopathological image classification.
Recently, large language models (LLMs) like ChatGPT and GPT-4 have attracted great attention given their surprising improvement and performance. Length controlled generation of LLMs emerges as an important topic, which also enables users to fully leverage the capability of LLMs in more real-world scenarios like generating a proper answer or essay of a desired length. In addition, the autoregressive generation in LLMs is extremely time-consuming, while the ability of controlling this generated length can arbitrarily reduce the inference cost by limiting the length, and thus satisfy different needs. Therefore, we aim to propose a prompt-based length control method to achieve this length controlled generation, which can also be widely applied in GPT-style LLMs. In particular, we adopt reinforcement learning with the reward signal given by either trainable or rule-based reward model, which further affects the generation of LLMs via rewarding a pre-defined target length. Experiments show that our method significantly improves the accuracy of prompt-based length control for summarization task on popular datasets like CNNDM and NYT. We believe this length-controllable ability can provide more potentials towards the era of LLMs.
Image Quality Assessment (IQA) constitutes a fundamental task within the field of computer vision, yet it remains an unresolved challenge, owing to the intricate distortion conditions, diverse image contents, and limited availability of data. Recently, the community has witnessed the emergence of numerous large-scale pretrained foundation models, which greatly benefit from dramatically increased data and parameter capacities. However, it remains an open problem whether the scaling law in high-level tasks is also applicable to IQA task which is closely related to low-level clues. In this paper, we demonstrate that with proper injection of local distortion features, a larger pretrained and fixed foundation model performs better in IQA tasks. Specifically, for the lack of local distortion structure and inductive bias of vision transformer (ViT), alongside the large-scale pretrained ViT, we use another pretrained convolution neural network (CNN), which is well known for capturing the local structure, to extract multi-scale image features. Further, we propose a local distortion extractor to obtain local distortion features from the pretrained CNN and a local distortion injector to inject the local distortion features into ViT. By only training the extractor and injector, our method can benefit from the rich knowledge in the powerful foundation models and achieve state-of-the-art performance on popular IQA datasets, indicating that IQA is not only a low-level problem but also benefits from stronger high-level features drawn from large-scale pretrained models.
A central characteristic of Bayesian statistics is the ability to consistently incorporate prior knowledge into various modeling processes. In this paper, we focus on translating domain expert knowledge into corresponding prior distributions over model parameters, a process known as prior elicitation. Expert knowledge can manifest itself in diverse formats, including information about raw data, summary statistics, or model parameters. A major challenge for existing elicitation methods is how to effectively utilize all of these different formats in order to formulate prior distributions that align with the expert's expectations, regardless of the model structure. To address these challenges, we develop a simulation-based elicitation method that can learn the hyperparameters of potentially any parametric prior distribution from a wide spectrum of expert knowledge using stochastic gradient descent. We validate the effectiveness and robustness of our elicitation method in four representative case studies covering linear models, generalized linear models, and hierarchical models. Our results support the claim that our method is largely independent of the underlying model structure and adaptable to various elicitation techniques, including quantile-based, moment-based, and histogram-based methods.
The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.