The ability to construct a realistic simulator of financial exchanges, including reproducing the dynamics of the limit order book, can give insight into many counterfactual scenarios, such as a flash crash, a margin call, or changes in macroeconomic outlook. In recent years, agent-based models have been developed that reproduce many features of an exchange, as summarised by a set of stylised facts and statistics. However, the ability to calibrate simulators to a specific period of trading remains an open challenge. In this work, we develop a novel approach to the calibration of market simulators by leveraging recent advances in deep learning, specifically using neural density estimators and embedding networks. We demonstrate that our approach is able to correctly identify high probability parameter sets, both when applied to synthetic and historical data, and without reliance on manually selected or weighted ensembles of stylised facts.
Uncertainty quantification for estimation through stochastic optimization solutions in an online setting has gained popularity recently. This paper introduces a novel inference method focused on constructing confidence intervals with efficient computation and fast convergence to the nominal level. Specifically, we propose to use a small number of independent multi-runs to acquire distribution information and construct a t-based confidence interval. Our method requires minimal additional computation and memory beyond the standard updating of estimates, making the inference process almost cost-free. We provide a rigorous theoretical guarantee for the confidence interval, demonstrating that the coverage is approximately exact with an explicit convergence rate and allowing for high confidence level inference. In particular, a new Gaussian approximation result is developed for the online estimators to characterize the coverage properties of our confidence intervals in terms of relative errors. Additionally, our method also allows for leveraging parallel computing to further accelerate calculations using multiple cores. It is easy to implement and can be integrated with existing stochastic algorithms without the need for complicated modifications.
We present a result according to which certain functions of covariance matrices are maximized at scalar multiples of the identity matrix. This is used to show that experimental designs that are optimal under an assumption of independent, homoscedastic responses can be minimax robust, in broad classes of alternate covariance structures. In particular it can justify the common practice of disregarding possible dependence, or heteroscedasticity, at the design stage of an experiment.
Models such as finite state automata are widely used to abstract the behavior of software systems by capturing the sequences of events observable during their execution. Nevertheless, models rarely exist in practice and, when they do, get easily outdated; moreover, manually building and maintaining models is costly and error-prone. As a result, a variety of model inference methods that automatically construct models from execution traces have been proposed to address these issues. However, performing a systematic and reliable accuracy assessment of inferred models remains an open problem. Even when a reference model is given, most existing model accuracy assessment methods may return misleading and biased results. This is mainly due to their reliance on statistical estimators over a finite number of randomly generated traces, introducing avoidable uncertainty about the estimation and being sensitive to the parameters of the random trace generative process. This paper addresses this problem by developing a systematic approach based on analytic combinatorics that minimizes bias and uncertainty in model accuracy assessment by replacing statistical estimation with deterministic accuracy measures. We experimentally demonstrate the consistency and applicability of our approach by assessing the accuracy of models inferred by state-of-the-art inference tools against reference models from established specification mining benchmarks.
The hyperparameters of recommender systems for top-n predictions are typically optimized to enhance the predictive performance of algorithms. Thereby, the optimization algorithm, e.g., grid search or random search, searches for the best hyperparameter configuration according to an optimization-target metric, like nDCG or Precision. In contrast, the optimized algorithm, internally optimizes a different loss function during training, like squared error or cross-entropy. To tackle this discrepancy, recent work focused on generating loss functions better suited for recommender systems. Yet, when evaluating an algorithm using a top-n metric during optimization, another discrepancy between the optimization-target metric and the training loss has so far been ignored. During optimization, the top-n items are selected for computing a top-n metric; ignoring that the top-n items are selected from the recommendations of a model trained with an entirely different loss function. Item recommendations suitable for optimization-target metrics could be outside the top-n recommended items; hiddenly impacting the optimization performance. Therefore, we were motivated to analyze whether the top-n items are optimal for optimization-target top-n metrics. In pursuit of an answer, we exhaustively evaluate the predictive performance of 250 selection strategies besides selecting the top-n. We extensively evaluate each selection strategy over twelve implicit feedback and eight explicit feedback data sets with eleven recommender systems algorithms. Our results show that there exist selection strategies other than top-n that increase predictive performance for various algorithms and recommendation domains. However, the performance of the top ~43% of selection strategies is not significantly different. We discuss the impact of our findings on optimization and re-ranking in recommender systems and feasible solutions.
Characters do not convey meaning, but sequences of characters do. We propose an unsupervised distributional method to learn the abstract meaningful units in a sequence of characters. Rather than segmenting the sequence, our Dynamic Capacity Slot Attention model discovers continuous representations of the objects in the sequence, extending an architecture for object discovery in images. We train our model on different languages and evaluate the quality of the obtained representations with forward and reverse probing classifiers. These experiments show that our model succeeds in discovering units which are similar to those proposed previously in form, content and level of abstraction, and which show promise for capturing meaningful information at a higher level of abstraction.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.