We consider dynamical low-rank approximations to parabolic problems on higher-order tensor manifolds in Hilbert spaces. In addition to existence of solutions and their stability with respect to perturbations to the problem data, we show convergence of spatial discretizations. Our framework accommodates various standard low-rank tensor formats for multivariate functions, including tensor train and hierarchical tensors.
The prevailing statistical approach to analyzing persistence diagrams is concerned with filtering out topological noise. In this paper, we adopt a different viewpoint and aim at estimating the actual distribution of a random persistence diagram, which captures both topological signal and noise. To that effect, Chazel and Divol (2019) proved that, under general conditions, the expected value of a random persistence diagram is a measure admitting a Lebesgue density, called the persistence intensity function. In this paper, we are concerned with estimating the persistence intensity function and a novel, normalized version of it -- called the persistence density function. We present a class of kernel-based estimators based on an i.i.d. sample of persistence diagrams and derive estimation rates in the supremum norm. As a direct corollary, we obtain uniform consistency rates for estimating linear representations of persistence diagrams, including Betti numbers and persistence surfaces. Interestingly, the persistence density function delivers stronger statistical guarantees.
In this article, we focus on the error that is committed when computing the matrix logarithm using the Gauss--Legendre quadrature rules. These formulas can be interpreted as Pad\'e approximants of a suitable Gauss hypergeometric function. Empirical observation tells us that the convergence of these quadratures becomes slow when the matrix is not close to the identity matrix, thus suggesting the usage of an inverse scaling and squaring approach for obtaining a matrix with this property. The novelty of this work is the introduction of error estimates that can be used to select a priori both the number of Legendre points needed to obtain a given accuracy and the number of inverse scaling and squaring to be performed. We include some numerical experiments to show the reliability of the estimates introduced.
Fairness holds a pivotal role in the realm of machine learning, particularly when it comes to addressing groups categorised by sensitive attributes, e.g., gender, race. Prevailing algorithms in fair learning predominantly hinge on accessibility or estimations of these sensitive attributes, at least in the training process. We design a single group-blind projection map that aligns the feature distributions of both groups in the source data, achieving (demographic) group parity, without requiring values of the protected attribute for individual samples in the computation of the map, as well as its use. Instead, our approach utilises the feature distributions of the privileged and unprivileged groups in a boarder population and the essential assumption that the source data are unbiased representation of the population. We present numerical results on synthetic data and real data.
Over the last decade, approximating functions in infinite dimensions from samples has gained increasing attention in computational science and engineering, especially in computational uncertainty quantification. This is primarily due to the relevance of functions that are solutions to parametric differential equations in various fields, e.g. chemistry, economics, engineering, and physics. While acquiring accurate and reliable approximations of such functions is inherently difficult, current benchmark methods exploit the fact that such functions often belong to certain classes of holomorphic functions to get algebraic convergence rates in infinite dimensions with respect to the number of (potentially adaptive) samples $m$. Our work focuses on providing theoretical approximation guarantees for the class of $(\boldsymbol{b},\varepsilon)$-holomorphic functions, demonstrating that these algebraic rates are the best possible for Banach-valued functions in infinite dimensions. We establish lower bounds using a reduction to a discrete problem in combination with the theory of $m$-widths, Gelfand widths and Kolmogorov widths. We study two cases, known and unknown anisotropy, in which the relative importance of the variables is known and unknown, respectively. A key conclusion of our paper is that in the latter setting, approximation from finite samples is impossible without some inherent ordering of the variables, even if the samples are chosen adaptively. Finally, in both cases, we demonstrate near-optimal, non-adaptive (random) sampling and recovery strategies which achieve close to same rates as the lower bounds.
Compliant mechanisms actuated by pneumatic loads are receiving increasing attention due to their direct applicability as soft robots that perform tasks using their flexible bodies. Using multiple materials to build them can further improve their performance and efficiency. Due to developments in additive manufacturing, the fabrication of multi-material soft robots is becoming a real possibility. To exploit this opportunity, there is a need for a dedicated design approach. This paper offers a systematic approach to developing such mechanisms using topology optimization. The extended SIMP scheme is employed for multi-material modeling. The design-dependent nature of the pressure load is modeled using the Darcy law with a volumetric drainage term. Flow coefficient of each element is interpolated using a smoothed Heaviside function. The obtained pressure field is converted to consistent nodal loads. The adjoint-variable approach is employed to determine the sensitivities. A robust formulation is employed, wherein a min-max optimization problem is formulated using the output displacements of the eroded and blueprint designs. Volume constraints are applied to the blueprint design, whereas the strain energy constraint is formulated with respect to the eroded design. The efficacy and success of the approach are demonstrated by designing pneumatically actuated multi-material gripper and contractor mechanisms. A numerical study confirms that multiple-material mechanisms perform relatively better than their single-material counterparts.
The supersingular Endomorphism Ring problem is the following: given a supersingular elliptic curve, compute all of its endomorphisms. The presumed hardness of this problem is foundational for isogeny-based cryptography. The One Endomorphism problem only asks to find a single non-scalar endomorphism. We prove that these two problems are equivalent, under probabilistic polynomial time reductions. We prove a number of consequences. First, assuming the hardness of the endomorphism ring problem, the Charles--Goren--Lauter hash function is collision resistant, and the SQIsign identification protocol is sound. Second, the endomorphism ring problem is equivalent to the problem of computing arbitrary isogenies between supersingular elliptic curves, a result previously known only for isogenies of smooth degree. Third, there exists an unconditional probabilistic algorithm to solve the endomorphism ring problem in time O~(sqrt(p)), a result that previously required to assume the generalized Riemann hypothesis. To prove our main result, we introduce a flexible framework for the study of isogeny graphs with additional information. We prove a general and easy-to-use rapid mixing theorem. The proof of this result goes via an augmented Deuring correspondence and the Jacquet-Langlands correspondence.
Identifying replicable signals across different studies provides stronger scientific evidence and more powerful inference. Existing literature on high dimensional applicability analysis either imposes strong modeling assumptions or has low power. We develop a powerful and robust empirical Bayes approach for high dimensional replicability analysis. Our method effectively borrows information from different features and studies while accounting for heterogeneity. We show that the proposed method has better power than competing methods while controlling the false discovery rate, both empirically and theoretically. Analyzing datasets from the genome-wide association studies reveals new biological insights that otherwise cannot be obtained by using existing methods.
This article proposes entropy stable discontinuous Galerkin schemes (DG) for two-fluid relativistic plasma flow equations. These equations couple the flow of relativistic fluids via electromagnetic quantities evolved using Maxwell's equations. The proposed schemes are based on the Gauss-Lobatto quadrature rule, which has the summation by parts (SBP) property. We exploit the structure of the equations having the flux with three independent parts coupled via nonlinear source terms. We design entropy stable DG schemes for each flux part, coupled with the fact that the source terms do not affect entropy, resulting in an entropy stable scheme for the complete system. The proposed schemes are then tested on various test problems in one and two dimensions to demonstrate their accuracy and stability.
Spectral independence is a recently-developed framework for obtaining sharp bounds on the convergence time of the classical Glauber dynamics. This new framework has yielded optimal $O(n \log n)$ sampling algorithms on bounded-degree graphs for a large class of problems throughout the so-called uniqueness regime, including, for example, the problems of sampling independent sets, matchings, and Ising-model configurations. Our main contribution is to relax the bounded-degree assumption that has so far been important in establishing and applying spectral independence. Previous methods for avoiding degree bounds rely on using $L^p$-norms to analyse contraction on graphs with bounded connective constant (Sinclair, Srivastava, Yin; FOCS'13). The non-linearity of $L^p$-norms is an obstacle to applying these results to bound spectral independence. Our solution is to capture the $L^p$-analysis recursively by amortising over the subtrees of the recurrence used to analyse contraction. Our method generalises previous analyses that applied only to bounded-degree graphs. As a main application of our techniques, we consider the random graph $G(n,d/n)$, where the previously known algorithms run in time $n^{O(\log d)}$ or applied only to large $d$. We refine these algorithmic bounds significantly, and develop fast $n^{1+o(1)}$ algorithms based on Glauber dynamics that apply to all $d$, throughout the uniqueness regime.
We use a large-scale experiment (N=8000) to determine whether GPT-4 can replicate cross-cultural differences in the Big Five, measured using the Ten-Item Personality Inventory. We used the US and South Korea as the cultural pair, given that prior research suggests substantial personality differences between people from these two countries. We manipulated the target of the simulation (US vs. Korean), the language of the inventory (English vs. Korean), and the language model (GPT-4 vs. GPT-3.5). Our results show that GPT-4 replicated the cross-cultural differences for each factor. However, mean ratings had an upward bias and exhibited lower variation than in the human samples, as well as lower structural validity. Overall, we provide preliminary evidence that LLMs can aid cross-cultural psychological research.