亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recognizing characters and predicting speakers of dialogue are critical for comic processing tasks, such as voice generation or translation. However, because characters vary by comic title, supervised learning approaches like training character classifiers which require specific annotations for each comic title are infeasible. This motivates us to propose a novel zero-shot approach, allowing machines to identify characters and predict speaker names based solely on unannotated comic images. In spite of their importance in real-world applications, these task have largely remained unexplored due to challenges in story comprehension and multimodal integration. Recent large language models (LLMs) have shown great capability for text understanding and reasoning, while their application to multimodal content analysis is still an open problem. To address this problem, we propose an iterative multimodal framework, the first to employ multimodal information for both character identification and speaker prediction tasks. Our experiments demonstrate the effectiveness of the proposed framework, establishing a robust baseline for these tasks. Furthermore, since our method requires no training data or annotations, it can be used as-is on any comic series.

相關內容

Interacting and understanding with text heavy visual content with multiple images is a major challenge for traditional vision models. This paper is on enhancing vision models' capability to comprehend or understand and learn from images containing a huge amount of textual information from the likes of textbooks and research papers which contain multiple images like graphs, etc and tables in them with different types of axes and scales. The approach involves dataset preprocessing, fine tuning which is by using instructional oriented data and evaluation. We also built a visual chat application integrating CLIP for image encoding and a model from the Massive Text Embedding Benchmark which is developed to consider both textual and visual inputs. An accuracy of 96.71% was obtained. The aim of the project is to increase and also enhance the advance vision models' capabilities in understanding complex visual textual data interconnected data, contributing to multimodal AI.

Despite the strong performance of Transformers, their quadratic computation complexity presents challenges in applying them to vision tasks. Automatic pruning is one of effective methods for reducing computation complexity without heuristic approaches. However, directly applying it to multi-head attention is not straightforward due to channel misalignment. In this paper, we propose an automatic channel pruning method to take into account the multi-head attention mechanism. First, we incorporate channel similarity-based weights into the pruning indicator to preserve more informative channels in each head. Then, we adjust pruning indicator to enforce removal of channels in equal proportions across all heads, preventing the channel misalignment. We also add a reweight module to compensate for information loss resulting from channel removal, and an effective initialization step for pruning indicator based on difference of attention between original structure and each channel. Our proposed method can be used to not only original attention, but also linear attention, which is more efficient as linear complexity with respect to the number of tokens. On ImageNet-1K, applying our pruning method to the FLattenTransformer, which includes both attention mechanisms, shows outperformed accuracy for several MACs compared with previous state-of-the-art efficient models and pruned methods. Code will be available soon.

Expressive speech-to-speech translation (S2ST) is a key research topic in seamless communication, which focuses on the preservation of semantics and speaker vocal style in translated speech. Early works synthesized speaker style aligned speech in order to directly learn the mapping from speech to target speech spectrogram. Without reliance on style aligned data, recent studies leverage the advances of language modeling (LM) and build cascaded LMs on semantic and acoustic tokens. This work proposes SeamlessExpressiveLM, a single speech language model for expressive S2ST. We decompose the complex source-to-target speech mapping into intermediate generation steps with chain-of-thought prompting. The model is first guided to translate target semantic content and then transfer the speaker style to multi-stream acoustic units. Evaluated on Spanish-to-English and Hungarian-to-English translations, SeamlessExpressiveLM outperforms cascaded LMs in both semantic quality and style transfer, meanwhile achieving better parameter efficiency.

The task of persona-steered text generation requires large language models (LLMs) to generate text that reflects the distribution of views that an individual fitting a persona could have. People have multifaceted personas, but prior work on bias in LLM-generated opinions has only explored multiple-choice settings or one-dimensional personas. We define an incongruous persona as a persona with multiple traits where one trait makes its other traits less likely in human survey data, e.g. political liberals who support increased military spending. We find that LLMs are 9.7% less steerable towards incongruous personas than congruous ones, sometimes generating the stereotypical stance associated with its demographic rather than the target stance. Models that we evaluate that are fine-tuned with Reinforcement Learning from Human Feedback (RLHF) are more steerable, especially towards stances associated with political liberals and women, but present significantly less diverse views of personas. We also find variance in LLM steerability that cannot be predicted from multiple-choice opinion evaluation. Our results show the importance of evaluating models in open-ended text generation, as it can surface new LLM opinion biases. Moreover, such a setup can shed light on our ability to steer models toward a richer and more diverse range of viewpoints.

Large language models (LLMs) have attracted considerable attention as they are capable of showcasing impressive capabilities generating comparable high-quality responses to human inputs. LLMs, can not only compose textual scripts such as emails and essays but also executable programming code. Contrary, the automated reasoning capability of these LLMs in performing statistically-driven descriptive analysis, particularly on user-specific data and as personal assistants to users with limited background knowledge in an application domain who would like to carry out basic, as well as advanced statistical and domain-specific analysis is not yet fully explored. More importantly, the performance of these LLMs has not been compared and discussed in detail when domain-specific data analysis tasks are needed. This study, consequently, explores whether LLMs can be used as generative AI-based personal assistants to users with minimal background knowledge in an application domain infer key data insights. To demonstrate the performance of the LLMs, the study reports a case study through which descriptive statistical analysis, as well as Natural Language Processing (NLP) based investigations, are performed on a number of phishing emails with the objective of comparing the accuracy of the results generated by LLMs to the ones produced by analysts. The experimental results show that LangChain and the Generative Pre-trained Transformer (GPT-4) excel in numerical reasoning tasks i.e., temporal statistical analysis, achieve competitive correlation with human judgments on feature engineering tasks while struggle to some extent on domain specific knowledge reasoning, where domain-specific knowledge is required.

Character animation in real-world scenarios necessitates a variety of constraints, such as trajectories, key-frames, interactions, etc. Existing methodologies typically treat single or a finite set of these constraint(s) as separate control tasks. They are often specialized, and the tasks they address are rarely extendable or customizable. We categorize these as solutions to the close-set motion control problem. In response to the complexity of practical motion control, we propose and attempt to solve the open-set motion control problem. This problem is characterized by an open and fully customizable set of motion control tasks. To address this, we introduce a new paradigm, programmable motion generation. In this paradigm, any given motion control task is broken down into a combination of atomic constraints. These constraints are then programmed into an error function that quantifies the degree to which a motion sequence adheres to them. We utilize a pre-trained motion generation model and optimize its latent code to minimize the error function of the generated motion. Consequently, the generated motion not only inherits the prior of the generative model but also satisfies the required constraints. Experiments show that we can generate high-quality motions when addressing a wide range of unseen tasks. These tasks encompass motion control by motion dynamics, geometric constraints, physical laws, interactions with scenes, objects or the character own body parts, etc. All of these are achieved in a unified approach, without the need for ad-hoc paired training data collection or specialized network designs. During the programming of novel tasks, we observed the emergence of new skills beyond those of the prior model. With the assistance of large language models, we also achieved automatic programming. We hope that this work will pave the way for the motion control of general AI agents.

Collaborative edge computing has become a popular paradigm where edge devices collaborate by sharing resources. Data dissemination is a fundamental problem in CEC to decide what data is transmitted from which device and how. Existing works on data dissemination have not focused on coflow scheduling in CEC, which involves deciding the order of flows within and across coflows at network links. Coflow implies a set of parallel flows with a shared objective. The existing works on coflow scheduling in data centers usually assume a non-blocking switch and do not consider congestion at different links in the multi-hop path in CEC, leading to increased coflow completion time (CCT). Furthermore, existing works do not consider multiple flow sources that cannot be ignored, as data can have duplicate copies at different edge devices. This work formulates the multi-source coflow scheduling problem in CEC, which includes jointly deciding the source and flow ordering for multiple coflows to minimize the sum of CCT. This problem is shown to be NP-hard and challenging as each flow can have multiple dependent conflicts at multiple links. We propose a source and coflow-aware search and adjust (SCASA) heuristic that first provides an initial solution considering the coflow characteristics. SCASA further improves the initial solution using the source search and adjust heuristic by leveraging the knowledge of both coflows and network congestion at links. Evaluation done using simulation experiments shows that SCASA leads to up to 83% reduction in the sum of CCT compared to benchmarks without a joint solution.

Bots have become increasingly prevalent in the digital sphere and have taken up a proactive role in shaping democratic processes. While previous studies have focused on their influence at the individual level, their potential macro-level impact on communication dynamics is still little understood. This study adopts an information theoretic approach from dynamical systems theory to examine the role of political bots shaping the dynamics of an online political discussion on Twitter. We quantify the components of this dynamic process in terms of its complexity, predictability, and the remaining uncertainty. Our findings suggest that bot activity is associated with increased complexity and uncertainty in the structural dynamics of online political communication. This work serves as a showcase for the use of information-theoretic measures from dynamical systems theory in modeling human-bot dynamics as a computational process that unfolds over time.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司