亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The interest of the machine learning community in image synthesis has grown significantly in recent years, with the introduction of a wide range of deep generative models and means for training them. In this work, we propose a general model-agnostic technique for improving the image quality and the distribution fidelity of generated images obtained by any generative model. Our method, termed BIGRoC (Boosting Image Generation via a Robust Classifier), is based on a post-processing procedure via the guidance of a given robust classifier and without a need for additional training of the generative model. Given a synthesized image, we propose to update it through projected gradient steps over the robust classifier to refine its recognition. We demonstrate this post-processing algorithm on various image synthesis methods and show a significant quantitative and qualitative improvement on CIFAR-10 and ImageNet. Surprisingly, although BIGRoC is the first model agnostic among refinement approaches and requires much less information, it outperforms competitive methods. Specifically, BIGRoC improves the image synthesis best performing diffusion model on ImageNet 128x128 by 14.81%, attaining an FID score of 2.53, and on 256x256 by 7.87%, achieving an FID of 3.63. Moreover, we conduct an opinion survey, according to which humans significantly prefer our method's outputs.

相關內容

The core problem in zero-shot open vocabulary detection is how to align visual and text features, so that the detector performs well on unseen classes. Previous approaches train the feature pyramid and detection head from scratch, which breaks the vision-text feature alignment established during pretraining, and struggles to prevent the language model from forgetting unseen classes. We propose three methods to alleviate these issues. Firstly, a simple scheme is used to augment the text embeddings which prevents overfitting to a small number of classes seen during training, while simultaneously saving memory and computation. Secondly, the feature pyramid network and the detection head are modified to include trainable gated shortcuts, which encourages vision-text feature alignment and guarantees it at the start of detection training. Finally, a self-training approach is used to leverage a larger corpus of image-text pairs thus improving detection performance on classes with no human annotated bounding boxes. Our three methods are evaluated on the zero-shot version of the LVIS benchmark, each of them showing clear and significant benefits. Our final network achieves the new stateof-the-art on the mAP-all metric and demonstrates competitive performance for mAP-rare, as well as superior transfer to COCO and Objects365.

Recent text-to-video generation approaches rely on computationally heavy training and require large-scale video datasets. In this paper, we introduce a new task of zero-shot text-to-video generation and propose a low-cost approach (without any training or optimization) by leveraging the power of existing text-to-image synthesis methods (e.g., Stable Diffusion), making them suitable for the video domain. Our key modifications include (i) enriching the latent codes of the generated frames with motion dynamics to keep the global scene and the background time consistent; and (ii) reprogramming frame-level self-attention using a new cross-frame attention of each frame on the first frame, to preserve the context, appearance, and identity of the foreground object. Experiments show that this leads to low overhead, yet high-quality and remarkably consistent video generation. Moreover, our approach is not limited to text-to-video synthesis but is also applicable to other tasks such as conditional and content-specialized video generation, and Video Instruct-Pix2Pix, i.e., instruction-guided video editing. As experiments show, our method performs comparably or sometimes better than recent approaches, despite not being trained on additional video data. Our code will be open sourced at: //github.com/Picsart-AI-Research/Text2Video-Zero .

Deep Neural Networks use thousands of mostly incomprehensible features to identify a single class, a decision no human can follow. We propose an interpretable sparse and low dimensional final decision layer in a deep neural network with measurable aspects of interpretability and demonstrate it on fine-grained image classification. We argue that a human can only understand the decision of a machine learning model, if the features are interpretable and only very few of them are used for a single decision. For that matter, the final layer has to be sparse and, to make interpreting the features feasible, low dimensional. We call a model with a Sparse Low-Dimensional Decision SLDD-Model. We show that a SLDD-Model is easier to interpret locally and globally than a dense high-dimensional decision layer while being able to maintain competitive accuracy. Additionally, we propose a loss function that improves a model's feature diversity and accuracy. Our more interpretable SLDD-Model only uses 5 out of just 50 features per class, while maintaining 97% to 100% of the accuracy on four common benchmark datasets compared to the baseline model with 2048 features.

This work is unique in the use of discrete wavelets that were built from or derived from Chebyshev polynomials of the second and third kind, filter the Discrete Second Chebyshev Wavelets Transform (DSCWT), and derive two effective filters. The Filter Discrete Third Chebyshev Wavelets Transform (FDTCWT) is used in the process of analyzing color images and removing noise and impurities that accompany the image, as well as because of the large amount of data that makes up the image as it is taken. These data are massive, making it difficult to deal with each other during transmission. However to address this issue, the image compression technique is used, with the image not losing information due to the readings that were obtained, and the results were satisfactory. Mean Square Error (MSE), Peak Signal Noise Ratio (PSNR), Bit Per Pixel (BPP), and Compression Ratio (CR) Coronavirus is the initial treatment, while the processing stage is done with network training for Convolutional Neural Networks (CNN) with Discrete Second Chebeshev Wavelets Convolutional Neural Network (DSCWCNN) and Discrete Third Chebeshev Wavelets Convolutional Neural Network (DTCWCNN) to create an efficient algorithm for face recognition, and the best results were achieved in accuracy and in the least amount of time. Two samples of color images that were made or implemented were used. The proposed theory was obtained with fast and good results; the results are evident shown in the tables below.

Backdoor attacks inject poisoned data into the training set, resulting in misclassification of the poisoned samples during model inference. Defending against such attacks is challenging, especially in real-world black-box settings where only model predictions are available. In this paper, we propose a novel backdoor defense framework that can effectively defend against various attacks through zero-shot image purification (ZIP). Our proposed framework can be applied to black-box models without requiring any internal information about the poisoned model or any prior knowledge of the clean/poisoned samples. Our defense framework involves a two-step process. First, we apply a linear transformation on the poisoned image to destroy the trigger pattern. Then, we use a pre-trained diffusion model to recover the missing semantic information removed by the transformation. In particular, we design a new reverse process using the transformed image to guide the generation of high-fidelity purified images, which can be applied in zero-shot settings. We evaluate our ZIP backdoor defense framework on multiple datasets with different kinds of attacks. Experimental results demonstrate the superiority of our ZIP framework compared to state-of-the-art backdoor defense baselines. We believe that our results will provide valuable insights for future defense methods for black-box models.

Various contrastive learning approaches have been proposed in recent years and achieve significant empirical success. While effective and prevalent, contrastive learning has been less explored for time series data. A key component of contrastive learning is to select appropriate augmentations imposing some priors to construct feasible positive samples, such that an encoder can be trained to learn robust and discriminative representations. Unlike image and language domains where ``desired'' augmented samples can be generated with the rule of thumb guided by prefabricated human priors, the ad-hoc manual selection of time series augmentations is hindered by their diverse and human-unrecognizable temporal structures. How to find the desired augmentations of time series data that are meaningful for given contrastive learning tasks and datasets remains an open question. In this work, we address the problem by encouraging both high \textit{fidelity} and \textit{variety} based upon information theory. A theoretical analysis leads to the criteria for selecting feasible data augmentations. On top of that, we propose a new contrastive learning approach with information-aware augmentations, InfoTS, that adaptively selects optimal augmentations for time series representation learning. Experiments on various datasets show highly competitive performance with up to 12.0\% reduction in MSE on forecasting tasks and up to 3.7\% relative improvement in accuracy on classification tasks over the leading baselines.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address both problems by proposing a novel deep person image generation model for synthesizing realistic person images conditional on pose. The model is based on a generative adversarial network (GAN) and used specifically for pose normalization in re-id, thus termed pose-normalization GAN (PN-GAN). With the synthesized images, we can learn a new type of deep re-id feature free of the influence of pose variations. We show that this feature is strong on its own and highly complementary to features learned with the original images. Importantly, we now have a model that generalizes to any new re-id dataset without the need for collecting any training data for model fine-tuning, thus making a deep re-id model truly scalable. Extensive experiments on five benchmarks show that our model outperforms the state-of-the-art models, often significantly. In particular, the features learned on Market-1501 can achieve a Rank-1 accuracy of 68.67% on VIPeR without any model fine-tuning, beating almost all existing models fine-tuned on the dataset.

北京阿比特科技有限公司