Semi-supervised video object segmentation (Semi-VOS), which requires only annotating the first frame of a video to segment future frames, has received increased attention recently. Among existing pipelines, the memory-matching-based one is becoming the main research stream, as it can fully utilize the temporal sequence information to obtain high-quality segmentation results. Even though this type of method has achieved promising performance, the overall framework still suffers from heavy computation overhead, mainly caused by the per-frame dense convolution operations between high-resolution feature maps and each kernel filter. Therefore, we propose a sparse baseline of VOS named SpVOS in this work, which develops a novel triple sparse convolution to reduce the computation costs of the overall VOS framework. The designed triple gate, taking full consideration of both spatial and temporal redundancy between adjacent video frames, adaptively makes a triple decision to decide how to apply the sparse convolution on each pixel to control the computation overhead of each layer, while maintaining sufficient discrimination capability to distinguish similar objects and avoid error accumulation. A mixed sparse training strategy, coupled with a designed objective considering the sparsity constraint, is also developed to balance the VOS segmentation performance and computation costs. Experiments are conducted on two mainstream VOS datasets, including DAVIS and Youtube-VOS. Results show that, the proposed SpVOS achieves superior performance over other state-of-the-art sparse methods, and even maintains comparable performance, e.g., an 83.04% (79.29%) overall score on the DAVIS-2017 (Youtube-VOS) validation set, with the typical non-sparse VOS baseline (82.88% for DAVIS-2017 and 80.36% for Youtube-VOS) while saving up to 42% FLOPs, showing its application potential for resource-constrained scenarios.
While several long-form VideoQA datasets have been introduced, the length of both videos used to curate questions and sub-clips of clues leveraged to answer those questions have not yet reached the criteria for genuine long-form video understanding. Moreover, their QAs are unduly narrow and modality-biased, lacking a wider view of understanding long-term video content with rich dynamics and complex narratives. To remedy this, we introduce MoVQA, a long-form movie question-answering dataset, and benchmark to assess the diverse cognitive capabilities of multimodal systems rely on multi-level temporal lengths, with considering both video length and clue length. Additionally, to take a step towards human-level understanding in long-form video, versatile and multimodal question-answering is designed from the moviegoer-perspective to assess the model capabilities on various perceptual and cognitive axes.Through analysis involving various baselines reveals a consistent trend: the performance of all methods significantly deteriorate with increasing video and clue length. Meanwhile, our established baseline method has shown some improvements, but there is still ample scope for enhancement on our challenging MoVQA dataset. We expect our MoVQA to provide a new perspective and encourage inspiring works on long-form video understanding research.
Few-shot segmentation (FSS) aims to segment novel classes in a query image by using only a small number of supporting images from base classes. However, in cross-domain few-shot segmentation (CD-FSS), leveraging features from label-rich domains for resource-constrained domains poses challenges due to domain discrepancies. This work presents a Dynamically Adaptive Refine (DARNet) method that aims to balance generalization and specificity for CD-FSS. Our method includes the Channel Statistics Disruption (CSD) strategy, which perturbs feature channel statistics in the source domain, bolstering generalization to unknown target domains. Moreover, recognizing the variability across target domains, an Adaptive Refine Self-Matching (ARSM) method is also proposed to adjust the matching threshold and dynamically refine the prediction result with the self-matching method, enhancing accuracy. We also present a Test-Time Adaptation (TTA) method to refine the model's adaptability to diverse feature distributions. Our approach demonstrates superior performance against state-of-the-art methods in CD-FSS tasks.
While image understanding on recognition-level has achieved remarkable advancements, reliable visual scene understanding requires comprehensive image understanding on recognition-level but also cognition-level, which calls for exploiting the multi-source information as well as learning different levels of understanding and extensive commonsense knowledge. In this paper, we propose a novel Cognitive Attention Network (CAN) for visual commonsense reasoning to achieve interpretable visual understanding. Specifically, we first introduce an image-text fusion module to fuse information from images and text collectively. Second, a novel inference module is designed to encode commonsense among image, query and response. Extensive experiments on large-scale Visual Commonsense Reasoning (VCR) benchmark dataset demonstrate the effectiveness of our approach. The implementation is publicly available at //github.com/tanjatang/CAN
We introduce Free3D, a simple approach designed for open-set novel view synthesis (NVS) from a single image. Similar to Zero-1-to-3, we start from a pre-trained 2D image generator for generalization, and fine-tune it for NVS. Compared to recent and concurrent works, we obtain significant improvements without resorting to an explicit 3D representation, which is slow and memory-consuming or training an additional 3D network. We do so by encoding better the target camera pose via a new per-pixel ray conditioning normalization (RCN) layer. The latter injects pose information in the underlying 2D image generator by telling each pixel its specific viewing direction. We also improve multi-view consistency via a light-weight multi-view attention layer and multi-view noise sharing. We train Free3D on the Objaverse dataset and demonstrate excellent generalization to various new categories in several new datasets, including OminiObject3D and GSO. We hope our simple and effective approach will serve as a solid baseline and help future research in NVS with more accuracy pose. The project page is available at //chuanxiaz.com/free3d/.
Recently, diffusion models have made remarkable progress in text-to-image (T2I) generation, synthesizing images with high fidelity and diverse contents. Despite this advancement, latent space smoothness within diffusion models remains largely unexplored. Smooth latent spaces ensure that a perturbation on an input latent corresponds to a steady change in the output image. This property proves beneficial in downstream tasks, including image interpolation, inversion, and editing. In this work, we expose the non-smoothness of diffusion latent spaces by observing noticeable visual fluctuations resulting from minor latent variations. To tackle this issue, we propose Smooth Diffusion, a new category of diffusion models that can be simultaneously high-performing and smooth. Specifically, we introduce Step-wise Variation Regularization to enforce the proportion between the variations of an arbitrary input latent and that of the output image is a constant at any diffusion training step. In addition, we devise an interpolation standard deviation (ISTD) metric to effectively assess the latent space smoothness of a diffusion model. Extensive quantitative and qualitative experiments demonstrate that Smooth Diffusion stands out as a more desirable solution not only in T2I generation but also across various downstream tasks. Smooth Diffusion is implemented as a plug-and-play Smooth-LoRA to work with various community models. Code is available at //github.com/SHI-Labs/Smooth-Diffusion.
We present LaMPilot, a novel framework for planning in the field of autonomous driving, rethinking the task as a code-generation process that leverages established behavioral primitives. This approach aims to address the challenge of interpreting and executing spontaneous user instructions such as "overtake the car ahead," which have typically posed difficulties for existing frameworks. We introduce the LaMPilot benchmark specifically designed to quantitatively evaluate the efficacy of Large Language Models (LLMs) in translating human directives into actionable driving policies. We then evaluate a wide range of state-of-the-art code generation language models on tasks from the LaMPilot Benchmark. The results of the experiments showed that GPT-4, with human feedback, achieved an impressive task completion rate of 92.7% and a minimal collision rate of 0.9%. To encourage further investigation in this area, our code and dataset will be made available.
Image-Text pretraining on web-scale image caption datasets has become the default recipe for open vocabulary classification and retrieval models thanks to the success of CLIP and its variants. Several works have also used CLIP features for dense prediction tasks and have shown the emergence of open-set abilities. However, the contrastive objective used by these models only focuses on image-text alignment and does not incentivise image feature learning for dense prediction tasks. In this work, we introduce SILC, a novel framework for vision language pretraining. SILC improves image-text contrastive learning with the simple addition of local-to-global correspondence learning by self-distillation. We show that distilling local image features from an exponential moving average (EMA) teacher model significantly improves model performance on dense predictions tasks like detection and segmentation, while also providing improvements on image-level tasks such as classification and retrieval. SILC models sets a new state of the art for zero-shot classification, few shot classification, image and text retrieval, zero-shot segmentation, and open vocabulary segmentation. We further show that SILC features greatly benefit open vocabulary detection, captioning and visual question answering.
The colorization of grayscale images is a complex and subjective task with significant challenges. Despite recent progress in employing large-scale datasets with deep neural networks, difficulties with controllability and visual quality persist. To tackle these issues, we present a novel image colorization framework that utilizes image diffusion techniques with granular text prompts. This integration not only produces colorization outputs that are semantically appropriate but also greatly improves the level of control users have over the colorization process. Our method provides a balance between automation and control, outperforming existing techniques in terms of visual quality and semantic coherence. We leverage a pretrained generative Diffusion Model, and show that we can finetune it for the colorization task without losing its generative power or attention to text prompts. Moreover, we present a novel CLIP-based ranking model that evaluates color vividness, enabling automatic selection of the most suitable level of vividness based on the specific scene semantics. Our approach holds potential particularly for color enhancement and historical image colorization.
Motions in a video primarily consist of camera motion, induced by camera movement, and object motion, resulting from object movement. Accurate control of both camera and object motion is essential for video generation. However, existing works either mainly focus on one type of motion or do not clearly distinguish between the two, limiting their control capabilities and diversity. Therefore, this paper presents MotionCtrl, a unified and flexible motion controller for video generation designed to effectively and independently control camera and object motion. The architecture and training strategy of MotionCtrl are carefully devised, taking into account the inherent properties of camera motion, object motion, and imperfect training data. Compared to previous methods, MotionCtrl offers three main advantages: 1) It effectively and independently controls camera motion and object motion, enabling more fine-grained motion control and facilitating flexible and diverse combinations of both types of motion. 2) Its motion conditions are determined by camera poses and trajectories, which are appearance-free and minimally impact the appearance or shape of objects in generated videos. 3) It is a relatively generalizable model that can adapt to a wide array of camera poses and trajectories once trained. Extensive qualitative and quantitative experiments have been conducted to demonstrate the superiority of MotionCtrl over existing methods.
Current state-of-the-art image generation models such as Latent Diffusion Models (LDMs) have demonstrated the capacity to produce visually striking food-related images. However, these generated images often exhibit an artistic or surreal quality that diverges from the authenticity of real-world food representations. This inadequacy renders them impractical for applications requiring realistic food imagery, such as training models for image-based dietary assessment. To address these limitations, we introduce FoodFusion, a Latent Diffusion model engineered specifically for the faithful synthesis of realistic food images from textual descriptions. The development of the FoodFusion model involves harnessing an extensive array of open-source food datasets, resulting in over 300,000 curated image-caption pairs. Additionally, we propose and employ two distinct data cleaning methodologies to ensure that the resulting image-text pairs maintain both realism and accuracy. The FoodFusion model, thus trained, demonstrates a remarkable ability to generate food images that exhibit a significant improvement in terms of both realism and diversity over the publicly available image generation models. We openly share the dataset and fine-tuned models to support advancements in this critical field of food image synthesis at //bit.ly/genai4good.