Combining machine learning and constrained optimization, Predict+Optimize tackles optimization problems containing parameters that are unknown at the time of solving. Prior works focus on cases with unknowns only in the objectives. A new framework was recently proposed to cater for unknowns also in constraints by introducing a loss function, called Post-hoc Regret, that takes into account the cost of correcting an unsatisfiable prediction. Since Post-hoc Regret is non-differentiable, the previous work computes only its approximation. While the notion of Post-hoc Regret is general, its specific implementation is applicable to only packing and covering linear programming problems. In this paper, we first show how to compute Post-hoc Regret exactly for any optimization problem solvable by a recursive algorithm satisfying simple conditions. Experimentation demonstrates substantial improvement in the quality of solutions as compared to the earlier approximation approach. Furthermore, we show experimentally the empirical behavior of different combinations of correction and penalty functions used in the Post-hoc Regret of the same benchmarks. Results provide insights for defining the appropriate Post-hoc Regret in different application scenarios.
In this paper, we focus on the solution of online optimization problems that arise often in signal processing and machine learning, in which we have access to streaming sources of data. We discuss algorithms for online optimization based on the prediction-correction paradigm, both in the primal and dual space. In particular, we leverage the typical regularized least-squares structure appearing in many signal processing problems to propose a novel and tailored prediction strategy, which we call extrapolation-based. By using tools from operator theory, we then analyze the convergence of the proposed methods as applied both to primal and dual problems, deriving an explicit bound for the tracking error, that is, the distance from the time-varying optimal solution. We further discuss the empirical performance of the algorithm when applied to signal processing, machine learning, and robotics problems.
The Blahut-Arimoto (BA) algorithm has played a fundamental role in the numerical computation of rate-distortion (RD) functions. This algorithm possesses a desirable monotonic convergence property by alternatively minimizing its Lagrangian with a fixed multiplier. In this paper, we propose a novel modification of the BA algorithm, letting the multiplier be updated in each iteration via a one-dimensional root-finding step with respect to a monotonic univariate function, which can be efficiently implemented by Newton's method. This allows the multiplier to be updated in a flexible and efficient manner, overcoming a major drawback of the original BA algorithm wherein the multiplier is fixed throughout iterations. Consequently, the modified algorithm is capable of directly computing the RD function for a given target distortion, without exploring the entire RD curve as in the original BA algorithm. A theoretical analysis shows that the modified algorithm still converges to the RD function and the convergence rate is $\Theta(1/n)$, where $n$ denotes the number of iterations. Numerical experiments demonstrate that the modified algorithm directly computes the RD function with a given target distortion, and it significantly accelerates the original BA algorithm.
The recent results presented in arXiv:2202.05608 have led to significant developments in achieving stable approximations of Helmholtz solutions by plane wave superposition. The study shows that the numerical instability and ill-conditioning inherent in plane wave-based Trefftz methods can be effectively overcome with regularization techniques, provided there exist accurate approximations in the form of expansions with bounded coefficients. Whenever the target solution contains high Fourier modes, propagative plane waves fail to yield stable approximations due to the exponential growth of the expansion coefficients. Conversely, evanescent plane waves, whose modal content covers high Fourier regimes, are able to provide both accurate and stable results. The developed numerical approach, which involves constructing evanescent plane wave approximation sets by sampling the parametric domain according to a probability density function, results in substantial improvements when compared to conventional propagative plane wave schemes. The following work extends this research to the three-dimensional setting, confirming the achieved results and introducing new ones. By generalizing the 3D Jacobi$-$Anger identity to complex-valued directions, we show that any Helmholtz solution in a ball can be represented as a continuous superposition of evanescent plane waves. This representation extends the classical Herglotz one and provides a relevant stability result that cannot be achieved with the use of propagative waves alone. The proposed numerical recipes have been tailored for the 3D setting and extended with new sampling strategies involving extremal systems of points. These methods are tested by numerical experiments, showing the desired accuracy and bounded-coefficient stability, in line with the two-dimensional case.
For solving combinatorial optimisation problems with metaheuristics, different search operators are applied for sampling new solutions in the neighbourhood of a given solution. It is important to understand the relationship between operators for various purposes, e.g., adaptively deciding when to use which operator to find optimal solutions efficiently. However, it is difficult to theoretically analyse this relationship, especially in the complex solution space of combinatorial optimisation problems. In this paper, we propose to empirically analyse the relationship between operators in terms of the correlation between their local optima and develop a measure for quantifying their relationship. The comprehensive analyses on a wide range of capacitated vehicle routing problem benchmark instances show that there is a consistent pattern in the correlation between commonly used operators. Based on this newly proposed local optima correlation metric, we propose a novel approach for adaptively selecting among the operators during the search process. The core intention is to improve search efficiency by preventing wasting computational resources on exploring neighbourhoods where the local optima have already been reached. Experiments on randomly generated instances and commonly used benchmark datasets are conducted. Results show that the proposed approach outperforms commonly used adaptive operator selection methods.
Many reinforcement learning (RL) applications have combinatorial action spaces, where each action is a composition of sub-actions. A standard RL approach ignores this inherent factorization structure, resulting in a potential failure to make meaningful inferences about rarely observed sub-action combinations; this is particularly problematic for offline settings, where data may be limited. In this work, we propose a form of linear Q-function decomposition induced by factored action spaces. We study the theoretical properties of our approach, identifying scenarios where it is guaranteed to lead to zero bias when used to approximate the Q-function. Outside the regimes with theoretical guarantees, we show that our approach can still be useful because it leads to better sample efficiency without necessarily sacrificing policy optimality, allowing us to achieve a better bias-variance trade-off. Across several offline RL problems using simulators and real-world datasets motivated by healthcare, we demonstrate that incorporating factored action spaces into value-based RL can result in better-performing policies. Our approach can help an agent make more accurate inferences within underexplored regions of the state-action space when applying RL to observational datasets.
Regression can be really difficult in case of big datasets, since we have to dealt with huge volumes of data. The demand of computational resources for the modeling process increases as the scale of the datasets does, since traditional approaches for regression involve inverting huge data matrices. The main problem relies on the large data size, and so a standard approach is subsampling that aims at obtaining the most informative portion of the big data. In the current paper we consider an approach based on leverages scores, already existing in the current literature. The aforementioned approach proposed in order to select subdata for linear model discrimination. However, we highlight its importance on the selection of data points that are the most informative for estimating unknown parameters. We conclude that the approach based on leverage scores improves existing approaches, providing simulation experiments as well as a real data application.
Brain connectome analysis commonly compresses high-resolution brain scans (typically composed of millions of voxels) down to only hundreds of regions of interest (ROIs) by averaging within-ROI signals. This huge dimension reduction improves computational speed and the morphological properties of anatomical structures; however, it also comes at the cost of substantial losses in spatial specificity and sensitivity, especially when the signals exhibit high within-ROI heterogeneity. Oftentimes, abnormally expressed functional connectivity (FC) between a pair of ROIs caused by a brain disease is primarily driven by only small subsets of voxel pairs within the ROI pair. This article proposes a new network method for detection of voxel-pair-level neural dysconnectivity with spatial constraints. Specifically, focusing on an ROI pair, our model aims to extract dense sub-areas that contain aberrant voxel-pair connections while ensuring that the involved voxels are spatially contiguous. In addition, we develop sub-community-detection algorithms to realize the model, and the consistency of these algorithms is justified. Comprehensive simulation studies demonstrate our method's effectiveness in reducing the false-positive rate while increasing statistical power, detection replicability, and spatial specificity. We apply our approach to reveal: (i) voxel-wise schizophrenia-altered FC patterns within the salience and temporal-thalamic network from 330 participants in a schizophrenia study; (ii) disrupted voxel-wise FC patterns related to nicotine addiction between the basal ganglia, hippocampus, and insular gyrus from 3269 participants using UK Biobank data. The detected results align with previous medical findings but include improved localized information.
In this paper, we derive a novel recovery type a posteriori error estimation of the Crank-Nicolson finite element method for the Cahn--Hilliard equation. To achieve this, we employ both the elliptic reconstruction technique and a time reconstruction technique based on three time-level approximations, resulting in an optimal a posteriori error estimator. We propose a time-space adaptive algorithm that utilizes the derived a posteriori error estimator as error indicators. Numerical experiments are presented to validate the theoretical findings, including comparing with an adaptive finite element method based on a residual type a posteriori error estimator.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.