亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We extend the notion of boycotts in cooperative games from one-on-one boycotts between single players to boycotts between coalitions. We prove that convex game offer a proper setting for studying the impact of boycotts. Boycotts have a heterogenous effect. Individual players that are targeted by many-on-one boycotts suffer most, while non-participating players may actually benefit from a boycott.

相關內容

A new shock-tracking technique that avoids re-meshing the computational grid around the moving shock-front was recently proposed by the authors (Ciallella et al., 2020). The method combines the unstructured shock-fitting (Paciorri and Bonfiglioli,2009) approach, developed in the last decade by some of the authors, with ideas coming from embedded boundary methods. In particular, second-order extrapolations based on Taylor series expansions are employed to transfer the solution and retain high order of accuracy. This paper describes the basic idea behind the new method and further algorithmic improvements which make the extrapolated Discontinuity Tracking Technique (eDIT) capable of dealing with complex shock-topologies featuring shock-shock and shock-wall interactions occurring in steady problems. This method paves the way to a new class of shock-tracking techniques truly independent on the mesh structure and flow solver. Various test-cases are included to prove the potential of the method, demonstrate the key features of the methodology, and thoroughly evaluate several technical aspects related to the extrapolation from/onto the shock, and their impact on accuracy, and conservation.

In this paper, we introduce a notion of mergeable weighted majority games with the aim of providing the first characterization of the Colomer-Mart\'inez power index (Colomer and Mart\'inez in J Theor Polit 7(1):41-63, 1995). Furthermore, we define and characterize a new power index for the family of weighted majority games that combines ideas of the Public Good (Holler in Polit Stud 30(2):262-271, 1982) and Colomer-Mart\'inez power indices. Finally, we analyze the National Assembly of Ecuador using these and some other well-known power indices.

We introduce a new model involving TU-games and exogenous structures. Specifically, we consider that each player in a population can choose an element in a strategy set and that, for every possible strategy profile, a TU-game is associated with the population. This is what we call a TU-game with strategies. We propose and characterize the maxmin procedure to map every game with strategies to a TU-game. We also study whether or not the relevant properties of TU-games are transmitted by applying the maxmin procedure. Finally, we examine two relevant classes of TU-games with strategies: airport and simple games with strategies.

Learning in general-sum games often yields collectively sub-optimal results. Addressing this, opponent shaping (OS) methods actively guide the learning processes of other agents, empirically leading to improved individual and group performances in many settings. Early OS methods use higher-order derivatives to shape the learning of co-players, making them unsuitable for shaping multiple learning steps. Follow-up work, Model-free Opponent Shaping (M-FOS), addresses these by reframing the OS problem as a meta-game. In contrast to early OS methods, there is little theoretical understanding of the M-FOS framework. Providing theoretical guarantees for M-FOS is hard because A) there is little literature on theoretical sample complexity bounds for meta-reinforcement learning B) M-FOS operates in continuous state and action spaces, so theoretical analysis is challenging. In this work, we present R-FOS, a tabular version of M-FOS that is more suitable for theoretical analysis. R-FOS discretises the continuous meta-game MDP into a tabular MDP. Within this discretised MDP, we adapt the $R_{max}$ algorithm, most prominently used to derive PAC-bounds for MDPs, as the meta-learner in the R-FOS algorithm. We derive a sample complexity bound that is exponential in the cardinality of the inner state and action space and the number of agents. Our bound guarantees that, with high probability, the final policy learned by an R-FOS agent is close to the optimal policy, apart from a constant factor. Finally, we investigate how R-FOS's sample complexity scales in the size of state-action space. Our theoretical results on scaling are supported empirically in the Matching Pennies environment.

We introduce Boolean Observation Games, a subclass of multi-player finite strategic games with incomplete information and qualitative objectives. In Boolean observation games, each player is associated with a finite set of propositional variables of which only it can observe the value, and it controls whether and to whom it can reveal that value. It does not control the given, fixed, value of variables. Boolean observation games are a generalization of Boolean games, a well-studied subclass of strategic games but with complete information, and wherein each player controls the value of its variables. In Boolean observation games, player goals describe multi-agent knowledge of variables. As in classical strategic games, players choose their strategies simultaneously and therefore observation games capture aspects of both imperfect and incomplete information. They require reasoning about sets of outcomes given sets of indistinguishable valuations of variables. An outcome relation between such sets determines what the Nash equilibria are. We present various outcome relations, including a qualitative variant of ex-post equilibrium. We identify conditions under which, given an outcome relation, Nash equilibria are guaranteed to exist. We also study the complexity of checking for the existence of Nash equilibria and of verifying if a strategy profile is a Nash equilibrium. We further study the subclass of Boolean observation games with `knowing whether' goal formulas, for which the satisfaction does not depend on the value of variables. We show that each such Boolean observation game corresponds to a Boolean game and vice versa, by a different correspondence, and that both correspondences are precise in terms of existence of Nash equilibria.

Most of the existing diffusion models use Gaussian noise for training and sampling across all time steps, which may not optimally account for the frequency contents reconstructed by the denoising network. Despite the diverse applications of correlated noise in computer graphics, its potential for improving the training process has been underexplored. In this paper, we introduce a novel and general class of diffusion models taking correlated noise within and across images into account. More specifically, we propose a time-varying noise model to incorporate correlated noise into the training process, as well as a method for fast generation of correlated noise mask. Our model is built upon deterministic diffusion models and utilizes blue noise to help improve the generation quality compared to using Gaussian white (random) noise only. Further, our framework allows introducing correlation across images within a single mini-batch to improve gradient flow. We perform both qualitative and quantitative evaluations on a variety of datasets using our method, achieving improvements on different tasks over existing deterministic diffusion models in terms of FID metric.

Driver intention recognition studies increasingly rely on deep neural networks. Deep neural networks have achieved top performance for many different tasks, but it is not a common practice to explicitly analyse the complexity and performance of the network's architecture. Therefore, this paper applies neural architecture search to investigate the effects of the deep neural network architecture on a real-world safety critical application with limited computational capabilities. We explore a pre-defined search space for three deep neural network layer types that are capable to handle sequential data (a long-short term memory, temporal convolution, and a time-series transformer layer), and the influence of different data fusion strategies on the driver intention recognition performance. A set of eight search strategies are evaluated for two driver intention recognition datasets. For the two datasets, we observed that there is no search strategy clearly sampling better deep neural network architectures. However, performing an architecture search does improve the model performance compared to the original manually designed networks. Furthermore, we observe no relation between increased model complexity and higher driver intention recognition performance. The result indicate that multiple architectures yield similar performance, regardless of the deep neural network layer type or fusion strategy.

We introduce a new class of totally balanced cooperative TU games, namely p -additive games. It is inspired by the class of inventory games that arises from inventory situations with temporary discounts (Toledo, 2002) and contains the class of inventory cost games (Meca et al. 2003). It is shown that every p-additive game and its corresponding subgames have a nonempty core. We also focus on studying the character concave or convex and monotone of p-additive games. In addition, the modified SOC-rule is proposed as a solution for p-additive games. This solution is suitable for p-additive games since it is a core-allocation which can be reached through a population monotonic allocation scheme. Moreover, two characterizations of the modified SOC-rule are provided.

Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.

Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.

北京阿比特科技有限公司