亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce a notion of mergeable weighted majority games with the aim of providing the first characterization of the Colomer-Mart\'inez power index (Colomer and Mart\'inez in J Theor Polit 7(1):41-63, 1995). Furthermore, we define and characterize a new power index for the family of weighted majority games that combines ideas of the Public Good (Holler in Polit Stud 30(2):262-271, 1982) and Colomer-Mart\'inez power indices. Finally, we analyze the National Assembly of Ecuador using these and some other well-known power indices.

相關內容

In this paper, we aim to improve the percentage of packets meeting their deadline in discrete-time M/M/1 queues with infrequent monitoring. More specifically, we look into policies that only monitor the system (and subsequently take actions) after a packet arrival. We model the system as an MDP and provide the optimal policy for some special cases. Furthermore, we introduce a heuristic algorithm called "AB-n" for general deadlines. Finally, we provide numerical results demonstrating the desirable performance of "AB-n" policies.

On the Boolean domain, there is a class of symmetric signatures called ``Fibonacci gates" for which a beautiful P-time combinatorial algorithm has been designed for the corresponding $\operatorname{Holant}^*$ problems. In this work, we give a combinatorial view for $\operatorname{Holant}^*(\mathcal{F})$ problems on a domain of size 3 where $\mathcal{F}$ is a set of arity 3 functions with inputs taking values on the domain of size 3 and the functions share some common properties. The combinatorial view can also be extended to the domain of size 4. Specifically, we extend the definition of "Fibonacci gates" to the domain of size 3 and the domain of size 4. Moreover, we give the corresponding combinatorial algorithms.

In this paper we study predictive mean matching mass imputation estimators to integrate data from probability and non-probability samples. We consider two approaches: matching predicted to observed ($\hat{y}-y$ matching) or predicted to predicted ($\hat{y}-\hat{y}$ matching) values. We prove the consistency of two semi-parametric mass imputation estimators based on these approaches and derive their variance and estimators of variance. Our approach can be employed with non-parametric regression techniques, such as kernel regression, and the analytical expression for variance can also be applied in nearest neighbour matching for non-probability samples. We conduct extensive simulation studies in order to compare the properties of this estimator with existing approaches, discuss the selection of $k$-nearest neighbours, and study the effects of model mis-specification. The paper finishes with empirical study in integration of job vacancy survey and vacancies submitted to public employment offices (admin and online data). Open source software is available for the proposed approaches.

While graph convolutional networks show great practical promises, the theoretical understanding of their generalization properties as a function of the number of samples is still in its infancy compared to the more broadly studied case of supervised fully connected neural networks. In this article, we predict the performances of a single-layer graph convolutional network (GCN) trained on data produced by attributed stochastic block models (SBMs) in the high-dimensional limit. Previously, only ridge regression on contextual-SBM (CSBM) has been considered in Shi et al. 2022; we generalize the analysis to arbitrary convex loss and regularization for the CSBM and add the analysis for another data model, the neural-prior SBM. We also study the high signal-to-noise ratio limit, detail the convergence rates of the GCN and show that, while consistent, it does not reach the Bayes-optimal rate for any of the considered cases.

We present a specific-purpose globalized and preconditioned Newton-CG solver to minimize a metric-aware curved high-order mesh distortion. The solver is specially devised to optimize curved high-order meshes for high polynomial degrees with a target metric featuring non-uniform sizing, high stretching ratios, and curved alignment -- exactly the features that stiffen the optimization problem. To this end, we consider two ingredients: a specific-purpose globalization and a specific-purpose Jacobi-$\text{iLDL}^{\text{T}}(0)$ preconditioning with varying accuracy and curvature tolerances (dynamic forcing terms) for the CG method. These improvements are critical in stiff problems because, without them, the large number of non-linear and linear iterations makes curved optimization impractical. Finally, to analyze the performance of our method, the results compare the specific-purpose solver with standard optimization methods. For this, we measure the matrix-vector products indicating the solver computational cost and the line-search iterations indicating the total amount of objective function evaluations. When we combine the globalization and the linear solver ingredients, we conclude that the specific-purpose Newton-CG solver reduces the total number of matrix-vector products by one order of magnitude. Moreover, the number of non-linear and line-search iterations is mainly smaller but of similar magnitude.

We propose a material design method via gradient-based optimization on compositions, overcoming the limitations of traditional methods: exhaustive database searches and conditional generation models. It optimizes inputs via backpropagation, aligning the model's output closely with the target property and facilitating the discovery of unlisted materials and precise property determination. Our method is also capable of adaptive optimization under new conditions without retraining. Applying to exploring high-Tc superconductors, we identified potential compositions beyond existing databases and discovered new hydrogen superconductors via conditional optimization. This method is versatile and significantly advances material design by enabling efficient, extensive searches and adaptability to new constraints.

Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

Training a deep architecture using a ranking loss has become standard for the person re-identification task. Increasingly, these deep architectures include additional components that leverage part detections, attribute predictions, pose estimators and other auxiliary information, in order to more effectively localize and align discriminative image regions. In this paper we adopt a different approach and carefully design each component of a simple deep architecture and, critically, the strategy for training it effectively for person re-identification. We extensively evaluate each design choice, leading to a list of good practices for person re-identification. By following these practices, our approach outperforms the state of the art, including more complex methods with auxiliary components, by large margins on four benchmark datasets. We also provide a qualitative analysis of our trained representation which indicates that, while compact, it is able to capture information from localized and discriminative regions, in a manner akin to an implicit attention mechanism.

北京阿比特科技有限公司