Investigating new methods of creating face morphing attacks is essential to foresee novel attacks and help mitigate them. Creating morphing attacks is commonly either performed on the image-level or on the representation-level. The representation-level morphing has been performed so far based on generative adversarial networks (GAN) where the encoded images are interpolated in the latent space to produce a morphed image based on the interpolated vector. Such a process was constrained by the limited reconstruction fidelity of GAN architectures. Recent advances in the diffusion autoencoder models have overcome the GAN limitations, leading to high reconstruction fidelity. This theoretically makes them a perfect candidate to perform representation-level face morphing. This work investigates using diffusion autoencoders to create face morphing attacks by comparing them to a wide range of image-level and representation-level morphs. Our vulnerability analyses on four state-of-the-art face recognition models have shown that such models are highly vulnerable to the created attacks, the MorDIFF, especially when compared to existing representation-level morphs. Detailed detectability analyses are also performed on the MorDIFF, showing that they are as challenging to detect as other morphing attacks created on the image- or representation-level. Data and morphing script are made public.
Adversarial attacks insert small, imperceptible perturbations to input samples that cause large, undesired changes to the output of deep learning models. Despite extensive research on generating adversarial attacks and building defense systems, there has been limited research on understanding adversarial attacks from an input-data perspective. This work introduces the notion of sample attackability, where we aim to identify samples that are most susceptible to adversarial attacks (attackable samples) and conversely also identify the least susceptible samples (robust samples). We propose a deep-learning-based method to detect the adversarially attackable and robust samples in an unseen dataset for an unseen target model. Experiments on standard image classification datasets enables us to assess the portability of the deep attackability detector across a range of architectures. We find that the deep attackability detector performs better than simple model uncertainty-based measures for identifying the attackable/robust samples. This suggests that uncertainty is an inadequate proxy for measuring sample distance to a decision boundary. In addition to better understanding adversarial attack theory, it is found that the ability to identify the adversarially attackable and robust samples has implications for improving the efficiency of sample-selection tasks, e.g. active learning in augmentation for adversarial training.
Backdoor attacks pose a new and emerging threat to AI security, where Deep Neural Networks (DNNs) are trained on datasets added to hidden trigger patterns. Although the poisoned model behaves normally on benign samples, it produces anomalous results on samples containing the trigger pattern. Nevertheless, most existing backdoor attacks face two significant drawbacks: their trigger patterns are visible and easy to detect by human inspection, and their injection process leads to the loss of natural sample features and trigger patterns, thereby reducing the attack success rate and the model accuracy. In this paper, we propose a novel backdoor attack named SATBA that overcomes these limitations by using spatial attention mechanism and U-type model. Our attack leverages spatial attention mechanism to extract data features and generate invisible trigger patterns that are correlated with clean data. Then it uses U-type model to plant these trigger patterns into the original data without causing noticeable feature loss. We evaluate our attack on three prominent image classification DNNs across three standard datasets and demonstrate that it achieves high attack success rate and robustness against backdoor defenses. Additionally, we also conduct extensive experiments on image similarity to highlight the stealthiness of our attack.
Face morphing attacks have emerged as a potential threat, particularly in automatic border control scenarios. Morphing attacks permit more than one individual to use travel documents that can be used to cross borders using automatic border control gates. The potential for morphing attacks depends on the selection of data subjects (accomplice and malicious actors). This work investigates lookalike and identical twins as the source of face morphing generation. We present a systematic study on benchmarking the vulnerability of Face Recognition Systems (FRS) to lookalike and identical twin morphing images. Therefore, we constructed new face morphing datasets using 16 pairs of identical twin and lookalike data subjects. Morphing images from lookalike and identical twins are generated using a landmark-based method. Extensive experiments are carried out to benchmark the attack potential of lookalike and identical twins. Furthermore, experiments are designed to provide insights into the impact of vulnerability with normal face morphing compared with lookalike and identical twin face morphing.
Botnet attacks are a major threat to networked systems because of their ability to turn the network nodes that they compromise into additional attackers, leading to the spread of high volume attacks over long periods. The detection of such Botnets is complicated by the fact that multiple network IP addresses will be simultaneously compromised, so that Collective Classification of compromised nodes, in addition to the already available traditional methods that focus on individual nodes, can be useful. Thus this work introduces a collective Botnet attack classification technique that operates on traffic from an n-node IP network with a novel Associated Random Neural Network (ARNN) that identifies the nodes which are compromised. The ARNN is a recurrent architecture that incorporates two mutually associated, interconnected and architecturally identical n-neuron random neural networks, that act simultneously as mutual critics to reach the decision regarding which of n nodes have been compromised. A novel gradient learning descent algorithm is presented for the ARNN, and is shown to operate effectively both with conventional off-line training from prior data, and with on-line incremental training without prior off-line learning. Real data from a 107 node packet network is used with over 700,000 packets to evaluate the ARNN, showing that it provides accurate predictions. Comparisons with other well-known state of the art methods using the same learning and testing datasets, show that the ARNN offers significantly better performance.
Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.
We construct targeted audio adversarial examples on automatic speech recognition. Given any audio waveform, we can produce another that is over 99.9% similar, but transcribes as any phrase we choose (at a rate of up to 50 characters per second). We apply our iterative optimization-based attack to Mozilla's implementation DeepSpeech end-to-end, and show it has a 100% success rate. The feasibility of this attack introduce a new domain to study adversarial examples.