Introduction: The aim of our retrospective study was to quantify the impact of Covid-19 on the temporal distribution of Emergency Medical Services (EMS) demand in Travis County, Austin, Texas and propose a robust model to forecast Covid-19 EMS incidents. Methods: We analyzed the temporal distribution of EMS calls in the Austin-Travis County area between January 1st, 2019, and December 31st, 2020. Change point detection was performed to identify critical dates marking changes in EMS call distributions, and time series regression was applied for forecasting Covid-19 EMS incidents. Results: Two critical dates marked the impact of Covid-19 on the distribution of EMS calls: March 17th, when the daily number of non-pandemic EMS incidents dropped significantly, and May 13th, by which the daily number of EMS calls climbed back to 75% of the number in pre-Covid-19 time. The new daily count of the hospitalization of Covid-19 patients alone proves a powerful predictor of the number of pandemic EMS calls, with an r2 value equal to 0.85. In particular, for every 2.5 cases where EMS takes a Covid-19 patient to a hospital, one person is admitted. Conclusion: The mean daily number of non-pandemic EMS demand was significantly less than the period before Covid-19 pandemic. The number of EMS calls for Covid-19 symptoms can be predicted from the daily new hospitalization of Covid-19 patients. These findings may be of interest to EMS departments as they plan for future pandemics, including the ability to predict pandemic-related calls in an effort to adjust a targeted response.
The global pandemic caused by COVID-19 affects our lives in all aspects. As of September 11, more than 28 million people have tested positive for COVID-19 infection, and more than 911,000 people have lost their lives in this virus battle. Some patients can not receive appropriate medical treatment due the limits of hospitalization volume and shortage of ICU beds. An estimated future hospitalization is critical so that medical resources can be allocated as needed. In this study, we propose to use 4 recurrent neural networks to infer hospitalization change for the following week compared with the current week. Results show that sequence to sequence model with attention achieves a high accuracy of 0.938 and AUC of 0.850 in the hospitalization prediction. Our work has the potential to predict the hospitalization need and send a warning to medical providers and other stakeholders when a re-surge initializes.
Since the increasing outspread of COVID-19 in the U.S., with the highest number of confirmed cases and deaths in the world as of September 2020, most states in the country have enforced travel restrictions resulting in sharp reductions in mobility. However, the overall impact and long-term implications of this crisis to travel and mobility remain uncertain. To this end, this study develops an analytical framework that determines and analyzes the most dominant factors impacting human mobility and travel in the U.S. during this pandemic. In particular, the study uses Granger causality to determine the important predictors influencing daily vehicle miles traveled and utilize linear regularization algorithms, including Ridge and LASSO techniques, to model and predict mobility. State-level time-series data were obtained from various open-access sources for the period starting from March 1, 2020 through June 13, 2020 and the entire data set was divided into two parts for training and testing purposes. The variables selected by Granger causality were used to train the three different reduced order models by ordinary least square regression, Ridge regression, and LASSO regression algorithms. Finally, the prediction accuracy of the developed models was examined on the test data. The results indicate that the factors including the number of new COVID cases, social distancing index, population staying at home, percent of out of county trips, trips to different destinations, socioeconomic status, percent of people working from home, and statewide closure, among others, were the most important factors influencing daily VMT. Also, among all the modeling techniques, Ridge regression provides the most superior performance with the least error, while LASSO regression also performed better than the ordinary least square model.
Dialogue systems are a popular Natural Language Processing (NLP) task as it is promising in real-life applications. It is also a complicated task since many NLP tasks deserving study are involved. As a result, a multitude of novel works on this task are carried out, and most of them are deep learning-based due to the outstanding performance. In this survey, we mainly focus on the deep learning-based dialogue systems. We comprehensively review state-of-the-art research outcomes in dialogue systems and analyze them from two angles: model type and system type. Specifically, from the angle of model type, we discuss the principles, characteristics, and applications of different models that are widely used in dialogue systems. This will help researchers acquaint these models and see how they are applied in state-of-the-art frameworks, which is rather helpful when designing a new dialogue system. From the angle of system type, we discuss task-oriented and open-domain dialogue systems as two streams of research, providing insight into the hot topics related. Furthermore, we comprehensively review the evaluation methods and datasets for dialogue systems to pave the way for future research. Finally, some possible research trends are identified based on the recent research outcomes. To the best of our knowledge, this survey is the most comprehensive and up-to-date one at present in the area of dialogue systems and dialogue-related tasks, extensively covering the popular frameworks, topics, and datasets.
The COVID-19 pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiological imaging using chest radiography. Motivated by this, a number of artificial intelligence (AI) systems based on deep learning have been proposed and results have been shown to be quite promising in terms of accuracy in detecting patients infected with COVID-19 using chest radiography images. However, to the best of the authors' knowledge, these developed AI systems have been closed source and unavailable to the research community for deeper understanding and extension, and unavailable for public access and use. Therefore, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest radiography images that is open source and available to the general public. We also describe the chest radiography dataset leveraged to train COVID-Net, which we will refer to as COVIDx and is comprised of 5941 posteroanterior chest radiography images across 2839 patient cases from two open access data repositories. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most.
Learning robot objective functions from human input has become increasingly important, but state-of-the-art techniques assume that the human's desired objective lies within the robot's hypothesis space. When this is not true, even methods that keep track of uncertainty over the objective fail because they reason about which hypothesis might be correct, and not whether any of the hypotheses are correct. We focus specifically on learning from physical human corrections during the robot's task execution, where not having a rich enough hypothesis space leads to the robot updating its objective in ways that the person did not actually intend. We observe that such corrections appear irrelevant to the robot, because they are not the best way of achieving any of the candidate objectives. Instead of naively trusting and learning from every human interaction, we propose robots learn conservatively by reasoning in real time about how relevant the human's correction is for the robot's hypothesis space. We test our inference method in an experiment with human interaction data, and demonstrate that this alleviates unintended learning in an in-person user study with a 7DoF robot manipulator.
In this work, we compare three different modeling approaches for the scores of soccer matches with regard to their predictive performances based on all matches from the four previous FIFA World Cups 2002 - 2014: Poisson regression models, random forests and ranking methods. While the former two are based on the teams' covariate information, the latter method estimates adequate ability parameters that reflect the current strength of the teams best. Within this comparison the best-performing prediction methods on the training data turn out to be the ranking methods and the random forests. However, we show that by combining the random forest with the team ability parameters from the ranking methods as an additional covariate we can improve the predictive power substantially. Finally, this combination of methods is chosen as the final model and based on its estimates, the FIFA World Cup 2018 is simulated repeatedly and winning probabilities are obtained for all teams. The model slightly favors Spain before the defending champion Germany. Additionally, we provide survival probabilities for all teams and at all tournament stages as well as the most probable tournament outcome.
Sentiment analysis, also called opinion mining, is the field of study that analyzes people's opinions,sentiments, attitudes and emotions. Songs are important to sentiment analysis since the songs and mood are mutually dependent on each other. Based on the selected song it becomes easy to find the mood of the listener, in future it can be used for recommendation. The song lyric is a rich source of datasets containing words that are helpful in analysis and classification of sentiments generated from it. Now a days we observe a lot of inter-sentential and intra-sentential code-mixing in songs which has a varying impact on audience. To study this impact we created a Telugu songs dataset which contained both Telugu-English code-mixed and pure Telugu songs. In this paper, we classify the songs based on its arousal as exciting or non-exciting. We develop a language identification tool and introduce code-mixing features obtained from it as additional features. Our system with these additional features attains 4-5% accuracy greater than traditional approaches on our dataset.
There is a need for systems to dynamically interact with ageing populations to gather information, monitor health condition and provide support, especially after hospital discharge or at-home settings. Several smart devices have been delivered by digital health, bundled with telemedicine systems, smartphone and other digital services. While such solutions offer personalised data and suggestions, the real disruptive step comes from the interaction of new digital ecosystem, represented by chatbots. Chatbots will play a leading role by embodying the function of a virtual assistant and bridging the gap between patients and clinicians. Powered by AI and machine learning algorithms, chatbots are forecasted to save healthcare costs when used in place of a human or assist them as a preliminary step of helping to assess a condition and providing self-care recommendations. This paper describes integrating chatbots into telemedicine systems intended for elderly patient after their hospital discharge. The paper discusses possible ways to utilise chatbots to assist healthcare providers and support patients with their condition.
The aim of knowledge graphs is to gather knowledge about the world and provide a structured representation of this knowledge. Current knowledge graphs are far from complete. To address the incompleteness of the knowledge graphs, link prediction approaches have been developed which make probabilistic predictions about new links in a knowledge graph given the existing links. Tensor factorization approaches have proven promising for such link prediction problems. In this paper, we develop a simple tensor factorization model called SimplE, through a slight modification of the Polyadic Decomposition model from 1927. The complexity of SimplE grows linearly with the size of embeddings. The embeddings learned through SimplE are interpretable, and certain types of expert knowledge in terms of logical rules can be incorporated into these embeddings through weight tying. We prove SimplE is fully-expressive and derive a bound on the size of its embeddings for full expressivity. We show empirically that, despite its simplicity, SimplE outperforms several state-of-the-art tensor factorization techniques.