We present a geometric variational discretization of nonlinear elasticity in 2D and 3D in the Lagrangian description. A main step in our construction is the definition of discrete deformation gradients and discrete Cauchy-Green deformation tensors, which allows for the development of a general discrete geometric setting for frame indifferent isotropic hyperelastic models. The resulting discrete framework is in perfect adequacy with the multisymplectic discretization of fluids proposed earlier by the authors. Thanks to the unified discrete setting, a geometric variational discretization can be developed for the coupled dynamics of a fluid impacting and flowing on the surface of an hyperelastic body. The variational treatment allows for a natural inclusion of incompressibility and impenetrability constraints via appropriate penalty terms. We test the resulting integrators in 2D and 3D with the case of a barotropic fluid flowing on incompressible rubber-like nonlinear models.
By concisely representing a joint function of many variables as the combination of small functions, discrete graphical models (GMs) provide a powerful framework to analyze stochastic and deterministic systems of interacting variables. One of the main queries on such models is to identify the extremum of this joint function. This is known as the Weighted Constraint Satisfaction Problem (WCSP) on deterministic Cost Function Networks and as Maximum a Posteriori (MAP) inference on stochastic Markov Random Fields. Algorithms for approximate WCSP inference typically rely on local consistency algorithms or belief propagation. These methods are intimately related to linear programming (LP) relaxations and often coupled with reparametrizations defined by the dual solution of the associated LP. Since the seminal work of Goemans and Williamson, it is well understood that convex SDP relaxations can provide superior guarantees to LP. But the inherent computational cost of interior point methods has limited their application. The situation has improved with the introduction of non-convex Burer-Monteiro style methods which are well suited to handle the SDP relaxation of combinatorial problems with binary variables (such as MAXCUT, MaxSAT or MAP/Ising). We compute low rank SDP upper and lower bounds for discrete pairwise graphical models with arbitrary number of values and arbitrary binary cost functions by extending a Burer-Monteiro style method based on row-by-row updates. We consider a traditional dualized constraint approach and a dedicated Block Coordinate Descent approach which avoids introducing large penalty coefficients to the formulation. On increasingly hard and dense WCSP/CFN instances, we observe that the BCD approach can outperform the dualized approach and provide tighter bounds than local consistencies/convergent message passing approaches.
In this paper we consider the spatial semi-discretization of conservative PDEs. Such finite dimensional approximations of infinite dimensional dynamical systems can be described as flows in suitable matrix spaces, which in turn leads to the need to solve polynomial matrix equations, a classical and important topic both in theoretical and in applied mathematics. Solving numerically these equations is challenging due to the presence of several conservation laws which our finite models incorporate and which must be retained while integrating the equations of motion. In the last thirty years, the theory of geometric integration has provided a variety of techniques to tackle this problem. These numerical methods require to solve both direct and inverse problems in matrix spaces. We present two algorithms to solve a cubic matrix equation arising in the geometric integration of isospectral flows. This type of ODEs includes finite models of ideal hydrodynamics, plasma dynamics, and spin particles, which we use as test problems for our algorithms.
Hypercontractivity is one of the most powerful tools in Boolean function analysis. Originally studied over the discrete hypercube, recent years have seen increasing interest in extensions to settings like the $p$-biased cube, slice, or Grassmannian, where variants of hypercontractivity have found a number of breakthrough applications including the resolution of Khot's 2-2 Games Conjecture (Khot, Minzer, Safra FOCS 2018). In this work, we develop a new theory of hypercontractivity on high dimensional expanders (HDX), an important class of expanding complexes that has recently seen similarly impressive applications in both coding theory and approximate sampling. Our results lead to a new understanding of the structure of Boolean functions on HDX, including a tight analog of the KKL Theorem and a new characterization of non-expanding sets. Unlike previous settings satisfying hypercontractivity, HDX can be asymmetric, sparse, and very far from products, which makes the application of traditional proof techniques challenging. We handle these barriers with the introduction of two new tools of independent interest: a new explicit combinatorial Fourier basis for HDX that behaves well under restriction, and a new local-to-global method for analyzing higher moments. Interestingly, unlike analogous second moment methods that apply equally across all types of expanding complexes, our tools rely inherently on simplicial structure. This suggests a new distinction among high dimensional expanders based upon their behavior beyond the second moment.
We present a family of discretizations for the Variable Eddington Factor (VEF) equations that have high-order accuracy on curved meshes and efficient preconditioned iterative solvers. The VEF discretizations are combined with a high-order Discontinuous Galerkin transport discretization to form an effective high-order, linear transport method. The VEF discretizations are derived by extending the unified analysis of Discontinuous Galerkin methods for elliptic problems to the VEF equations. This framework is used to define analogs of the interior penalty, second method of Bassi and Rebay, minimal dissipation local Discontinuous Galerkin, and continuous finite element methods. The analysis of subspace correction preconditioners, which use a continuous operator to iteratively precondition the discontinuous discretization, is extended to the case of the non-symmetric VEF system. Numerical results demonstrate that the VEF discretizations have arbitrary-order accuracy on curved meshes, preserve the thick diffusion limit, and are effective on a proxy problem from thermal radiative transfer in both outer transport iterations and inner preconditioned linear solver iterations. In addition, a parallel weak scaling study of the interior penalty VEF discretization demonstrates the scalability of the method out to 1152 processors.
Regression models are used in a wide range of applications providing a powerful scientific tool for researchers from different fields. Linear, or simple parametric, models are often not sufficient to describe complex relationships between input variables and a response. Such relationships can be better described through flexible approaches such as neural networks, but this results in less interpretable models and potential overfitting. Alternatively, specific parametric nonlinear functions can be used, but the specification of such functions is in general complicated. In this paper, we introduce a flexible approach for the construction and selection of highly flexible nonlinear parametric regression models. Nonlinear features are generated hierarchically, similarly to deep learning, but have additional flexibility on the possible types of features to be considered. This flexibility, combined with variable selection, allows us to find a small set of important features and thereby more interpretable models. Within the space of possible functions, a Bayesian approach, introducing priors for functions based on their complexity, is considered. A genetically modified mode jumping Markov chain Monte Carlo algorithm is adopted to perform Bayesian inference and estimate posterior probabilities for model averaging. In various applications, we illustrate how our approach is used to obtain meaningful nonlinear models. Additionally, we compare its predictive performance with several machine learning algorithms.
This paper presents a novel Bayesian approach for hyperspectral image unmixing. The observed pixels are modeled by a linear combination of material signatures weighted by their corresponding abundances. A spike-and-slab abundance prior is adopted to promote sparse mixtures and an Ising prior model is used to capture spatial correlation of the mixture support across pixels. We approximate the posterior distribution of the abundances using the expectation-propagation (EP) method. We show that it can significantly reduce the computational complexity of the unmixing stage and meanwhile provide uncertainty measures, compared to expensive Monte Carlo strategies traditionally considered for uncertainty quantification. Moreover, many variational parameters within each EP factor can be updated in a parallel manner, which enables mapping of efficient algorithmic architectures based on graphics processing units (GPU). Under the same approximate Bayesian framework, we then extend the proposed algorithm to semi-supervised unmixing, whereby the abundances are viewed as latent variables and the expectation-maximization (EM) algorithm is used to refine the endmember matrix. Experimental results on synthetic data and real hyperspectral data illustrate the benefits of the proposed framework over state-of-art linear unmixing methods.
Integrative analysis of multi-level pharmacogenomic data for modeling dependencies across various biological domains is crucial for developing genomic-testing based treatments. Chain graphs characterize conditional dependence structures of such multi-level data where variables are naturally partitioned into multiple ordered layers, consisting of both directed and undirected edges. Existing literature mostly focus on Gaussian chain graphs, which are ill-suited for non-normal distributions with heavy-tailed marginals, potentially leading to inaccurate inferences. We propose a Bayesian robust chain graph model (RCGM) based on random transformations of marginals using Gaussian scale mixtures to account for node-level non-normality in continuous multivariate data. This flexible modeling strategy facilitates identification of conditional sign dependencies among non-normal nodes while still being able to infer conditional dependencies among normal nodes. In simulations, we demonstrate that RCGM outperforms existing Gaussian chain graph inference methods in data generated from various non-normal mechanisms. We apply our method to genomic, transcriptomic and proteomic data to understand underlying biological processes holistically for drug response and resistance in lung cancer cell lines. Our analysis reveals inter- and intra- platform dependencies of key signaling pathways to monotherapies of icotinib, erlotinib and osimertinib among other drugs, along with shared patterns of molecular mechanisms behind drug actions.
There has been a growing interest in unsupervised domain adaptation (UDA) to alleviate the data scalability issue, while the existing works usually focus on classifying independently discrete labels. However, in many tasks (e.g., medical diagnosis), the labels are discrete and successively distributed. The UDA for ordinal classification requires inducing non-trivial ordinal distribution prior to the latent space. Target for this, the partially ordered set (poset) is defined for constraining the latent vector. Instead of the typically i.i.d. Gaussian latent prior, in this work, a recursively conditional Gaussian (RCG) set is proposed for ordered constraint modeling, which admits a tractable joint distribution prior. Furthermore, we are able to control the density of content vectors that violate the poset constraint by a simple "three-sigma rule". We explicitly disentangle the cross-domain images into a shared ordinal prior induced ordinal content space and two separate source/target ordinal-unrelated spaces, and the self-training is worked on the shared space exclusively for ordinal-aware domain alignment. Extensive experiments on UDA medical diagnoses and facial age estimation demonstrate its effectiveness.
We propose a general and scalable approximate sampling strategy for probabilistic models with discrete variables. Our approach uses gradients of the likelihood function with respect to its discrete inputs to propose updates in a Metropolis-Hastings sampler. We show empirically that this approach outperforms generic samplers in a number of difficult settings including Ising models, Potts models, restricted Boltzmann machines, and factorial hidden Markov models. We also demonstrate the use of our improved sampler for training deep energy-based models on high dimensional discrete data. This approach outperforms variational auto-encoders and existing energy-based models. Finally, we give bounds showing that our approach is near-optimal in the class of samplers which propose local updates.
The Normalized Cut (NCut) objective function, widely used in data clustering and image segmentation, quantifies the cost of graph partitioning in a way that biases clusters or segments that are balanced towards having lower values than unbalanced partitionings. However, this bias is so strong that it avoids any singleton partitions, even when vertices are very weakly connected to the rest of the graph. Motivated by the B\"uhler-Hein family of balanced cut costs, we propose the family of Compassionately Conservative Balanced (CCB) Cut costs, which are indexed by a parameter that can be used to strike a compromise between the desire to avoid too many singleton partitions and the notion that all partitions should be balanced. We show that CCB-Cut minimization can be relaxed into an orthogonally constrained $\ell_{\tau}$-minimization problem that coincides with the problem of computing Piecewise Flat Embeddings (PFE) for one particular index value, and we present an algorithm for solving the relaxed problem by iteratively minimizing a sequence of reweighted Rayleigh quotients (IRRQ). Using images from the BSDS500 database, we show that image segmentation based on CCB-Cut minimization provides better accuracy with respect to ground truth and greater variability in region size than NCut-based image segmentation.