亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show how to combine in a natural way (i.e. without any test nor switch) the conservative and non conservative formulations of an hyperbolic system that has a conservative form. This is inspired from two different class of schemes: the Residual Distribution one \cite{MR4090481}, and the Active Flux formulations \cite{AF1, AF3, AF4,AF5,RoeAF}. The solution is globally continuous, and as in the active flux method, described by a combination of point values and average values. Unlike the "classical" active flux methods, the meaning of the pointwise and cella averaged degrees of freedom is different, and hence follow different form of PDEs: it is a conservative version of the cell average, and a possibly non conservative one for the points. This new class of scheme is proved to satisfy a Lax-Wendroff like theorem. We also develop a method to perform non linear stability. We illustrate the behaviour on several benchmarks, some quite challenging.

相關內容

In this paper we obtain improved iteration complexities for solving $\ell_p$ regression. We provide methods which given any full-rank $\mathbf{A} \in \mathbb{R}^{n \times d}$ with $n \geq d$, $b \in \mathbb{R}^n$, and $p \geq 2$ solve $\min_{x \in \mathbb{R}^d} \left\|\mathbf{A} x - b\right\|_p$ to high precision in time dominated by that of solving $\widetilde{O}_p(d^{\frac{p-2}{3p-2}})$ linear systems in $\mathbf{A}^\top \mathbf{D} \mathbf{A}$ for positive diagonal matrices $\mathbf{D}$. This improves upon the previous best iteration complexity of $\widetilde{O}_p(n^{\frac{p-2}{3p-2}})$ (Adil, Kyng, Peng, Sachdeva 2019). As a corollary, we obtain an $\widetilde{O}(d^{1/3}\epsilon^{-2/3})$ iteration complexity for approximate $\ell_\infty$ regression. Further, for $q \in (1, 2]$ and dual norm $q = p/(p-1)$ we provide an algorithm that solves $\ell_q$ regression in $\widetilde{O}(d^{\frac{p-2}{2p-2}})$ iterations. To obtain this result we analyze row reweightings (closely inspired by $\ell_p$-norm Lewis weights) which allow a closer connection between $\ell_2$ and $\ell_p$ regression. We provide adaptations of two different iterative optimization frameworks which leverage this connection and yield our results. The first framework is based on iterative refinement and multiplicative weights based width reduction and the second framework is based on highly smooth acceleration. Both approaches yield $\widetilde{O}_p(d^{\frac{p-2}{3p-2}})$ iteration methods but the second has a polynomial dependence on $p$ (as opposed to the exponential dependence of the first algorithm) and provides a new alternative to the previous state-of-the-art methods for $\ell_p$ regression for large $p$.

We study active sampling algorithms for linear regression, which aim to query only a small number of entries of a target vector $b\in\mathbb{R}^n$ and output a near minimizer to $\min_{x\in\mathbb{R}^d}\|Ax-b\|$, where $A\in\mathbb{R}^{n \times d}$ is a design matrix and $\|\cdot\|$ is some loss function. For $\ell_p$ norm regression for any $0<p<\infty$, we give an algorithm based on Lewis weight sampling that outputs a $(1+\epsilon)$ approximate solution using just $\tilde{O}(d^{\max(1,{p/2})}/\mathrm{poly}(\epsilon))$ queries to $b$. We show that this dependence on $d$ is optimal, up to logarithmic factors. Our result resolves a recent open question of Chen and Derezi\'{n}ski, who gave near optimal bounds for the $\ell_1$ norm, and suboptimal bounds for $\ell_p$ regression with $p\in(1,2)$. We also provide the first total sensitivity upper bound of $O(d^{\max\{1,p/2\}}\log^2 n)$ for loss functions with at most degree $p$ polynomial growth. This improves a recent result of Tukan, Maalouf, and Feldman. By combining this with our techniques for the $\ell_p$ regression result, we obtain an active regression algorithm making $\tilde O(d^{1+\max\{1,p/2\}}/\mathrm{poly}(\epsilon))$ queries, answering another open question of Chen and Derezi\'{n}ski. For the important special case of the Huber loss, we further improve our bound to an active sample complexity of $\tilde O(d^{(1+\sqrt2)/2}/\epsilon^c)$ and a non-active sample complexity of $\tilde O(d^{4-2\sqrt 2}/\epsilon^c)$, improving a previous $d^4$ bound for Huber regression due to Clarkson and Woodruff. Our sensitivity bounds have further implications, improving a variety of previous results using sensitivity sampling, including Orlicz norm subspace embeddings and robust subspace approximation. Finally, our active sampling results give the first sublinear time algorithms for Kronecker product regression under every $\ell_p$ norm.

Solutions to many partial differential equations satisfy certain bounds or constraints. For example, the density and pressure are positive for equations of fluid dynamics, and in the relativistic case the fluid velocity is upper bounded by the speed of light, etc. As widely realized, it is crucial to develop bound-preserving numerical methods that preserve such intrinsic constraints. Exploring provably bound-preserving schemes has attracted much attention and is actively studied in recent years. This is however still a challenging task for many systems especially those involving nonlinear constraints. Based on some key insights from geometry, we systematically propose an innovative and general framework, referred to as geometric quasilinearization (GQL), which paves a new effective way for studying bound-preserving problems with nonlinear constraints. The essential idea of GQL is to equivalently transfer all nonlinear constraints into linear ones, through properly introducing some free auxiliary variables. We establish the fundamental principle and general theory of GQL via the geometric properties of convex regions, and propose three simple effective methods for constructing GQL. We apply the GQL approach to a variety of partial differential equations, and demonstrate its effectiveness and remarkable advantages for studying bound-preserving schemes, by diverse challenging examples and applications which cannot be easily handled by direct or traditional approaches.

In this paper, we derive the mixed and componentwise condition numbers for a linear function of the solution to the total least squares with linear equality constraint (TLSE) problem. The explicit expressions of the mixed and componentwise condition numbers by dual techniques under both unstructured and structured componentwise perturbations is considered. With the intermediate result, i.e. we can recover the both unstructured and structured condition number for the TLS problem. We choose the small-sample statistical condition estimation method to estimate both unstructured and structured condition numbers with high reliability. Numerical experiments are provided to illustrate the obtained results.

In this paper, we introduce a new approach based on distance fields to exactly impose boundary conditions in physics-informed deep neural networks. The challenges in satisfying Dirichlet boundary conditions in meshfree and particle methods are well-known. This issue is also pertinent in the development of physics informed neural networks (PINN) for the solution of partial differential equations. We introduce geometry-aware trial functions in artifical neural networks to improve the training in deep learning for partial differential equations. To this end, we use concepts from constructive solid geometry (R-functions) and generalized barycentric coordinates (mean value potential fields) to construct $\phi$, an approximate distance function to the boundary of a domain. To exactly impose homogeneous Dirichlet boundary conditions, the trial function is taken as $\phi$ multiplied by the PINN approximation, and its generalization via transfinite interpolation is used to a priori satisfy inhomogeneous Dirichlet (essential), Neumann (natural), and Robin boundary conditions on complex geometries. In doing so, we eliminate modeling error associated with the satisfaction of boundary conditions in a collocation method and ensure that kinematic admissibility is met pointwise in a Ritz method. We present numerical solutions for linear and nonlinear boundary-value problems over domains with affine and curved boundaries. Benchmark problems in 1D for linear elasticity, advection-diffusion, and beam bending; and in 2D for the Poisson equation, biharmonic equation, and the nonlinear Eikonal equation are considered. The approach extends to higher dimensions, and we showcase its use by solving a Poisson problem with homogeneous Dirichlet boundary conditions over the 4D hypercube. This study provides a pathway for meshfree analysis to be conducted on the exact geometry without domain discretization.

This paper is concerned with superconvergence properties of the direct discontinuous Galerkin (DDG) method for two-dimensional nonlinear convection-diffusion equations. By using the idea of correction function, we prove that, for any piecewise tensor-product polynomials of degree $k\geq 2$, the DDG solution is superconvergent at nodes and Lobatto points, with an order of ${\cal O}(h^{2k})$ and ${\cal O}(h^{k+2})$, respectively. Moreover, superconvergence properties for the derivative approximation are also studied and the superconvergence points are identified at Gauss points, with an order of ${\cal O}(h^{k+1})$. Numerical experiments are presented to confirm the sharpness of all the theoretical findings.

In this paper, we revisit the $L_2$-norm error estimate for $C^0$-interior penalty analysis of Dirichlet boundary control problem governed by biharmonic operator. In this work, we have relaxed the interior angle condition of the domain from $120$ degrees to $180$ degrees, therefore this analysis can be carried out for any convex domain. The theoretical findings are illustrated by numerical experiments. Moreover, we propose a new analysis to derive the error estimates for the biharmonic equation with Cahn-Hilliard type boundary condition under minimal regularity assumption.

A necklace is an equivalence class of words of length $n$ over an alphabet under the cyclic shift (rotation) operation. As a classical object, there have been many algorithmic results for key operations on necklaces, including counting, generating, ranking, and unranking. This paper generalises the concept of necklaces to the multidimensional setting. We define multidimensional necklaces as an equivalence classes over multidimensional words under the multidimensional cyclic shift operation. Alongside this definition, we generalise several problems from the one dimensional setting to the multidimensional setting for multidimensional necklaces with size $(n_1,n_2,...,n_d)$ over an alphabet of size $q$ including: providing closed form equations for counting the number of necklaces; an $O(n_1 \cdot n_2 \cdot ... \cdot n_d)$ time algorithm for transforming some necklace $w$ to the next necklace in the ordering; an $O((n_1 \cdot n_2 \cdot ... \cdot n_d)^5)$ time algorithm to rank necklaces (determine the number of necklaces smaller than $w$ in the set of necklaces); an $O((n_1\cdot n_2 \cdot ... \cdot n_d)^{6(d + 1)} \cdot \log^d(q))$ time algorithm to unrank multidimensional necklace (determine the $i^{th}$ necklace in the set of necklaces). Our results on counting, ranking, and unranking are further extended to the fixed content setting, where every necklace has the same Parikh vector, in other words every necklace shares the same number of occurrences of each symbol. Finally, we study the $k$-centre problem for necklaces both in the single and multidimensional settings. We provide strong approximation algorithms for solving this problem in both the one dimensional and multidimensional settings.

This paper considers the Fourier transform over the slice of the Boolean hypercube. We prove a relationship between the Fourier coefficients of a function over the slice, and the Fourier coefficients of its restrictions. As an application, we prove a Goldreich-Levin theorem for functions on the slice based on the Kushilevitz-Mansour algorithm for the Boolean hypercube.

Two zonal wall-models based on integral form of the boundary layer differential equations, albeit with algebraic complexity, have been implemented in an unstructured-grid cell-centered finite-volume LES solver. The first model is a novel implementation of the ODE equilibrium wall model where the velocity profile is expressed in the integral form using the constant shear-stress layer assumption and the integral is evaluated using a spectral quadrature method, resulting in a local and algebraic (grid-free) formulation. The second model, which closely follows the integral wall model of Yang et al. (Phys. Fluids 27, 025112 (2015)), is based on the vertically-integrated thin-boundary-layer PDE along with a prescribed composite velocity profile in the wall-modeled region. The prescribed profile allows for a grid-free analytical integration of the PDE in the wall-normal direction, rendering this model algebraic in space. Several numerical challenges unique to the implementation of these integral models in unstructured mesh environments are identified and possible remedies are proposed. The performance of the wall models is also assessed against the traditional finite-volume-based ODE Equilibrium wall model.

北京阿比特科技有限公司