In the binary hypothesis testing problem, it is well known that sequentiality in taking samples eradicates the trade-off between two error exponents, yet implementing the optimal test requires the knowledge of the underlying distributions, say $P_0$ and $P_1$. In the scenario where the knowledge of distributions is replaced by empirically observed statistics from the respective distributions, the gain of sequentiality is less understood when subject to universality constraints over all possible $P_0,P_1$. In this work, the gap is mended by a unified study on sequentiality in the universal binary classification problem, where the universality constraints are set on the expected stopping time as well as the type-I error exponent. The type-I error exponent is required to achieve a pre-set distribution-dependent constraint $\lambda(P_0,P_1)$ for all $P_0,P_1$. Under the proposed framework, different sequential setups are investigated so that fair comparisons can be made with the fixed-length counterpart. By viewing these sequential classification problems as special cases of a general sequential composite hypothesis testing problem, the optimal type-II error exponents are characterized. Specifically, in the general sequential composite hypothesis testing problem subject to universality constraints, upper and lower bounds on the type-II error exponent are proved, and a sufficient condition for which the bounds coincide is given. The results for sequential classification problems are then obtained accordingly. With the characterization of the optimal error exponents, the benefit of sequentiality is shown both analytically and numerically by comparing the sequential and the fixed-length cases in representative examples of type-I exponent constraint $\lambda$.
Testing has developed into the fundamental statistical framework for falsifying hypotheses. Unfortunately, tests are binary in nature: a test either rejects a hypothesis or not. Such binary decisions do not reflect the reality of many scientific studies, which often aim to present the evidence against a hypothesis and do not necessarily intend to establish a definitive conclusion. To solve this, we propose the continuous generalization of a test, which we use to measure the evidence against a hypothesis. Such a continuous test can be viewed as a continuous non-randomized interpretation of the classical 'randomized test'. This offers the benefits of a randomized test, without the downsides of external randomization. Another interpretation is as a literal measure, which measures the amount of binary tests that reject the hypothesis. Our work completes the bridge between classical tests and the recently proposed $e$-values: $e$-values bounded to $[0, 1/\alpha]$ are continuously interpreted size $\alpha$ randomized tests. Taking $\alpha$ to 0 yields the regular $e$-value: a 'level 0' continuous test. Moreover, we generalize the traditional notion of power by using generalized means. This produces a unified framework that contains both classical Neyman-Pearson optimal testing and log-optimal $e$-values, as well as a continuum of other options. The traditional $p$-value appears as the reciprocal of an $e$-value, that satisfies a weaker error bound. In an illustration in a Gaussian location model, we find that optimal continuous tests are of a beautifully simple form.
Assessing the performance of systems to classify Multi-Party Conversations (MPC) is challenging due to the interconnection between linguistic and structural characteristics of conversations. Conventional evaluation methods often overlook variances in model behavior across different levels of structural complexity on interaction graphs. In this work, we propose a methodological pipeline to investigate model performance across specific structural attributes of conversations. As a proof of concept we focus on Response Selection and Addressee Recognition tasks, to diagnose model weaknesses. To this end, we extract representative diagnostic subdatasets with a fixed number of users and a good structural variety from a large and open corpus of online MPCs. We further frame our work in terms of data minimization, avoiding the use of original usernames to preserve privacy, and propose alternatives to using original text messages. Results show that response selection relies more on the textual content of conversations, while addressee recognition requires capturing their structural dimension. Using an LLM in a zero-shot setting, we further highlight how sensitivity to prompt variations is task-dependent.
Cognitive modeling commonly relies on asking participants to complete a battery of varied tests in order to estimate attention, working memory, and other latent variables. In many cases, these tests result in highly variable observation models. A near-ubiquitous approach is to repeat many observations for each test independently, resulting in a distribution over the outcomes from each test given to each subject. Latent variable models (LVMs), if employed, are only added after data collection. In this paper, we explore the usage of LVMs to enable learning across many correlated variables simultaneously. We extend LVMs to the setting where observed data for each subject are a series of observations from many different distributions, rather than simple vectors to be reconstructed. By embedding test battery results for individuals in a latent space that is trained jointly across a population, we can leverage correlations both between disparate test data for a single participant and between multiple participants. We then propose an active learning framework that leverages this model to conduct more efficient cognitive test batteries. We validate our approach by demonstrating with real-time data acquisition that it performs comparably to conventional methods in making item-level predictions with fewer test items.
Complicated first principles modelling and controller synthesis can be prohibitively slow and expensive for high-mix, low-volume products such as hydraulic excavators. Instead, in a data-driven approach, recorded trajectories from the real system can be used to train local model networks (LMNs), for which feedforward controllers are derived via feedback linearization. However, previous works required LMNs without zero dynamics for feedback linearization, which restricts the model structure and thus modelling capacity of LMNs. In this paper, we overcome this restriction by providing a criterion for when feedback linearization of LMNs with zero dynamics yields a valid controller. As a criterion we propose the bounded-input bounded-output stability of the resulting controller. In two additional contributions, we extend this approach to consider measured disturbance signals and multiple inputs and outputs. We illustrate the effectiveness of our contributions in a hydraulic excavator control application with hardware experiments. To this end, we train LMNs from recorded, noisy data and derive feedforward controllers used as part of a leveling assistance system on the excavator. In our experiments, incorporating disturbance signals and multiple inputs and outputs enhances tracking performance of the learned controller. A video of our experiments is available at //youtu.be/lrrWBx2ASaE.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
We propose a novel method for automatic reasoning on knowledge graphs based on debate dynamics. The main idea is to frame the task of triple classification as a debate game between two reinforcement learning agents which extract arguments -- paths in the knowledge graph -- with the goal to promote the fact being true (thesis) or the fact being false (antithesis), respectively. Based on these arguments, a binary classifier, called the judge, decides whether the fact is true or false. The two agents can be considered as sparse, adversarial feature generators that present interpretable evidence for either the thesis or the antithesis. In contrast to other black-box methods, the arguments allow users to get an understanding of the decision of the judge. Since the focus of this work is to create an explainable method that maintains a competitive predictive accuracy, we benchmark our method on the triple classification and link prediction task. Thereby, we find that our method outperforms several baselines on the benchmark datasets FB15k-237, WN18RR, and Hetionet. We also conduct a survey and find that the extracted arguments are informative for users.
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.
We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.