亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Next location prediction is a discipline that involves predicting a users next location. Its applications include resource allocation, quality of service, energy efficiency, and traffic management. This paper proposes an energy-efficient, small, and low parameter machine learning (ML) architecture for accurate next location prediction, deployable on modest base stations and edge devices. To accomplish this we ran a hundred hyperparameter experiments on the full human mobility patterns of an entire city, to determine an exact ML architecture that reached a plateau of accuracy with the least amount of model parameters. We successfully achieved a reduction in the number of model parameters within published ML architectures from 202 million down to 2 million. This reduced the total size of the model parameters from 791 MB down to 8 MB. Additionally, this decreased the training time by a factor of four, the amount of graphics processing unit (GPU) memory needed for training by a factor of twenty, and the overall accuracy was increased from 80.16% to 82.54%. This improvement allows for modest base stations and edge devices which do not have a large amount of memory or storage, to deploy and utilize the proposed ML architecture for next location prediction.

相關內容

Multi-objective optimization problems can be found in many real-world applications, where the objectives often conflict each other and cannot be optimized by a single solution. In the past few decades, numerous methods have been proposed to find Pareto solutions that represent different optimal trade-offs among the objectives for a given problem. However, these existing methods could have high computational complexity or may not have good theoretical properties for solving a general differentiable multi-objective optimization problem. In this work, by leveraging the smooth optimization technique, we propose a novel and lightweight smooth Tchebycheff scalarization approach for gradient-based multi-objective optimization. It has good theoretical properties for finding all Pareto solutions with valid trade-off preferences, while enjoying significantly lower computational complexity compared to other methods. Experimental results on various real-world application problems fully demonstrate the effectiveness of our proposed method.

The growing interconnection between software systems increases the need for security already at design time. Security-related properties like confidentiality are often analyzed based on data flow diagrams (DFDs). However, manually analyzing DFDs of large software systems is bothersome and error-prone, and adjusting an already deployed software is costly. Additionally, closed analysis ecosystems limit the reuse of modeled information and impede comprehensive statements about a system's security. In this paper, we present an open and extensible framework for data flow analysis. The central element of our framework is our new implementation of a well-validated data-flow-based analysis approach. The framework is compatible with DFDs and can also extract data flows from the Palladio architectural description language. We showcase the extensibility with multiple model and analysis extensions. Our evaluation indicates that we can analyze similar scenarios while achieving higher scalability compared to previous implementations.

To fully leverage the capabilities of mobile manipulation robots, it is imperative that they are able to autonomously execute long-horizon tasks in large unexplored environments. While large language models (LLMs) have shown emergent reasoning skills on arbitrary tasks, existing work primarily concentrates on explored environments, typically focusing on either navigation or manipulation tasks in isolation. In this work, we propose MoMa-LLM, a novel approach that grounds language models within structured representations derived from open-vocabulary scene graphs, dynamically updated as the environment is explored. We tightly interleave these representations with an object-centric action space. The resulting approach is zero-shot, open-vocabulary, and readily extendable to a spectrum of mobile manipulation and household robotic tasks. We demonstrate the effectiveness of MoMa-LLM in a novel semantic interactive search task in large realistic indoor environments. In extensive experiments in both simulation and the real world, we show substantially improved search efficiency compared to conventional baselines and state-of-the-art approaches, as well as its applicability to more abstract tasks. We make the code publicly available at //moma-llm.cs.uni-freiburg.de.

Evaluating the alignment of large language models (LLMs) with user-defined coding preferences is a challenging endeavour that requires assessing intricate textual LLMs' outputs. By relying on automated metrics and static analysis tools, existing benchmarks fail to assess nuances in user instructions and LLM outputs, highlighting the need for large-scale datasets and benchmarks for LLM preference alignment. In this paper, we introduce CodeUltraFeedback, a preference dataset of 10,000 complex instructions to tune and align LLMs to coding preferences through AI feedback. We generate responses to the instructions using a pool of 14 diverse LLMs, which we then annotate according to their alignment with five coding preferences using the LLM-as-a-Judge approach with GPT-3.5, producing both numerical and textual feedback. We also present CODAL-Bench, a benchmark for assessing LLM alignment with these coding preferences. Our results show that CodeLlama-7B-Instruct, aligned through reinforcement learning from AI feedback (RLAIF) with direct preference optimization (DPO) using CodeUltraFeedback's AI feedback data, outperforms 34B LLMs on CODAL-Bench, validating the utility of CodeUltraFeedback for preference tuning. Furthermore, we show our DPO-aligned CodeLlama model improves functional correctness on HumanEval+ compared to the unaligned base model. Therefore, our contributions bridge the gap in preference tuning of LLMs for code and set the stage for further advancements in model alignment and RLAIF for code intelligence. Our code and data are available at //github.com/martin-wey/CodeUltraFeedback.

Recently, sign-aware graph recommendation has drawn much attention as it will learn users' negative preferences besides positive ones from both positive and negative interactions (i.e., links in a graph) with items. To accommodate the different semantics of negative and positive links, existing works utilize two independent encoders to model users' positive and negative preferences, respectively. However, these approaches cannot learn the negative preferences from high-order heterogeneous interactions between users and items formed by multiple links with different signs, resulting in inaccurate and incomplete negative user preferences. To cope with these intractable issues, we propose a novel \textbf{L}ight \textbf{S}igned \textbf{G}raph Convolution Network specifically for \textbf{Rec}ommendation (\textbf{LSGRec}), which adopts a unified modeling approach to simultaneously model high-order users' positive and negative preferences on a signed user-item interaction graph. Specifically, for the negative preferences within high-order heterogeneous interactions, first-order negative preferences are captured by the negative links, while high-order negative preferences are propagated along positive edges. Then, recommendation results are generated based on positive preferences and optimized with negative ones. Finally, we train representations of users and items through different auxiliary tasks. Extensive experiments on three real-world datasets demonstrate that our method outperforms existing baselines regarding performance and computational efficiency. Our code is available at \url{//anonymous.4open.science/r/LSGRec-BB95}.

Synthetic data from generative models emerges as the privacy-preserving data-sharing solution. Such a synthetic data set shall resemble the original data without revealing identifiable private information. The backbone technology of tabular synthesizers is rooted in image generative models, ranging from Generative Adversarial Networks (GANs) to recent diffusion models. Recent prior work sheds light on the utility-privacy tradeoff on tabular data, revealing and quantifying privacy risks on synthetic data. We first conduct an exhaustive empirical analysis, highlighting the utility-privacy tradeoff of five state-of-the-art tabular synthesizers, against eight privacy attacks, with a special focus on membership inference attacks. Motivated by the observation of high data quality but also high privacy risk in tabular diffusion, we propose DP-TLDM, Differentially Private Tabular Latent Diffusion Model, which is composed of an autoencoder network to encode the tabular data and a latent diffusion model to synthesize the latent tables. Following the emerging f-DP framework, we apply DP-SGD to train the auto-encoder in combination with batch clipping and use the separation value as the privacy metric to better capture the privacy gain from DP algorithms. Our empirical evaluation demonstrates that DP-TLDM is capable of achieving a meaningful theoretical privacy guarantee while also significantly enhancing the utility of synthetic data. Specifically, compared to other DP-protected tabular generative models, DP-TLDM improves the synthetic quality by an average of 35% in data resemblance, 15% in the utility for downstream tasks, and 50% in data discriminability, all while preserving a comparable level of privacy risk.

Context: Static analyses are well-established to aid in understanding bugs or vulnerabilities during the development process or in large-scale studies. A low false-positive rate is essential for the adaption in practice and for precise results of empirical studies. Unfortunately, static analyses tend to report where a vulnerability manifests rather than the fix location. This can cause presumed false positives or imprecise results. Method: To address this problem, we designed an adaption of an existing static analysis algorithm that can distinguish between a manifestation and fix location, and reports error chains. An error chain represents at least two interconnected errors that occur successively, thus building the connection between the fix and manifestation location. We used our tool CogniCryptSUBS for a case study on 471 GitHub repositories, a performance benchmark to compare different analysis configurations, and conducted an expert interview. Result: We found that 50 % of the projects with a report had at least one error chain. Our runtime benchmark demonstrated that our improvement caused only a minimal runtime overhead of less than 4 %. The results of our expert interview indicate that with our adapted version participants require fewer executions of the analysis. Conclusion: Our results indicate that error chains occur frequently in real-world projects, and ignoring them can lead to imprecise evaluation results. The runtime benchmark indicates that our tool is a feasible and efficient solution for detecting error chains in real-world projects. Further, our results gave a hint that the usability of static analyses may benefit from supporting error chains.

Concurrent distributed systems are notoriously difficult to construct and reason about. Choreographic programming is a recent paradigm that describes a distributed system in a single global program called a choreography. Choreographies simplify reasoning about distributed systems and can ensure deadlock freedom by static analysis. In previous choreographic programming languages, each value is located at a single party, and the programmer is expected to insert special untyped "select" operations to ensure that all parties follow the same communication pattern. We present He-Lambda-Small, a new choreographic programming language with Multiply Located Values. He-Lambda-Small allows multicasting to a set of parties, and the resulting value will be located at all of them. This approach enables a simple and elegant alternative to "select": He-Lambda-Small requires that the guard for a conditional be located at all of the relevant parties. In He-Lambda-Small, checking that a choreography is well-typed suffices to show that it is deadlock-free. We present several case studies that demonstrate the use of multiply-located values to concisely encode tricky communication patterns described in previous work without the use of "select" or redundant communication.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

北京阿比特科技有限公司