Intelligent reflecting surface (IRS) has been considered as a revolutionary technology to enhance the wireless communication performance. To cater for multiple mobile users, adjusting IRS beamforming patterns over time, i.e., dynamic IRS beamforming (DIBF), is generally needed for achieving satisfactory performance, which results in high controlling power consumption and overhead. To avoid such cost, we propose a new architecture based on the static regulated IRS for wireless coverage enhancement, where the principle of distributed multiple-input multiple-output (D-MIMO) is integrated into the system to exploite the diversity of spatial directions provided by multiple access points (APs). For this new D-MIMO empowered static IRS architecture, the total target area is partitioned into several subareas and each subarea is served by an assigned AP. We consider to maximize the worst-case received power over all locations in the target area by jointly optimizing a single set of IRS beamforming pattern and AP-subarea association. Then, a two-step algorithm is proposed to obtain its high-quality solution. Theoretical analysis unveils that the fundamental squared power gain can still be achieved over all locations in the target area. The performance gap relative to the DIBF scheme is also analytically quantified. Numerical results validate our theoretical findings and demonstrate the effectiveness of our proposed design over benchmark schemes.
We consider communication over channels whose statistics are not known in full, but can be parameterized as a finite family of memoryless channels. A typical approach to address channel uncertainty is to design codes for the worst channel in the family, resulting in the well-known compound channel capacity. Although this approach is robust, it may suffer a significant loss of performance if the capacity-achieving distribution of the worst channel attains low rates over other channels. In this work, we cope with channel uncertainty through the lens of {\em competitive analysis}. The main idea is to optimize a relative metric that compares the performance of the designed code and a clairvoyant code that has access to the true channel. To allow communication rates that adapt to the channel at use, we consider rateless codes with a fixed number of message bits and random decoding times. We propose two competitive metrics: the competitive ratio between the expected rates of the two codes, and a regret defined as the difference between the expected rates. The competitive ratio, for instance, provides a percentage guarantee on the expected rate of the designed code when compared to the rate of the clairvoyant code that knows the channel at hand. Our main results are single-letter expressions for the optimal {\em competitive-ratio} and {\em regret}, expressed as a max-min or min-max optimization. Several examples illustrate the benefits of the competitive analysis approach to code design compared to the compound channel.
Advancing reinforcement learning (RL) requires tools that are flexible enough to easily prototype new methods while avoiding impractically slow experimental turnaround times. To match the first requirement, the most popular RL libraries advocate for highly modular agent composability, which facilitates experimentation and development. To solve challenging environments within reasonable time frames, scaling RL to large sampling and computing resources has proved a successful strategy. However, this capability has been so far difficult to combine with modularity. In this work, we explore design choices to allow agent composability both at a local and distributed level of execution. We propose a versatile approach that allows the definition of RL agents at different scales through independent reusable components. We demonstrate experimentally that our design choices allow us to reproduce classical benchmarks, explore multiple distributed architectures, and solve novel and complex environments while giving full control to the user in the agent definition and training scheme definition. We believe this work can provide useful insights to the next generation of RL libraries.
Principal component analysis (PCA) is one of the most popular methods for dimension reduction. In light of the rapidly growing large-scale data in federated ecosystems, the traditional PCA method is often not applicable due to privacy protection considerations and large computational burden. Algorithms were proposed to lower the computational cost, but few can handle both high dimensionality and massive sample size under the distributed setting. In this paper, we propose the FAst DIstributed (FADI) PCA method for federated data when both the dimension $d$ and the sample size $n$ are ultra-large, by simultaneously performing parallel computing along $d$ and distributed computing along $n$. Specifically, we utilize $L$ parallel copies of $p$-dimensional fast sketches to divide the computing burden along $d$ and aggregate the results distributively along the split samples. We present FADI under a general framework applicable to multiple statistical problems, and establish comprehensive theoretical results under the general framework. We show that FADI enjoys the same non-asymptotic error rate as the traditional PCA when $Lp \ge d$. We also derive inferential results that characterize the asymptotic distribution of FADI, and show a phase-transition phenomenon as $Lp$ increases. We perform extensive simulations to show that FADI substantially outperforms the existing methods in computational efficiency while preserving accuracy, and validate the distributional phase-transition phenomenon through numerical experiments. We apply FADI to the 1000 Genomes data to study the population structure.
Intelligent reflecting surface (IRS) is a promising technique to extend the network coverage and improve spectral efficiency. This paper investigates an IRS-assisted terahertz (THz) multiple-input multiple-output (MIMO)-nonorthogonal multiple access (NOMA) system based on hybrid precoding with the presence of eavesdropper. Two types of sparse RF chain antenna structures are adopted, i.e., sub-connected structure and fully connected structure. First, cluster heads are selected for each beam, and analog precoding based on discrete phase is designed. Then, users are clustered based on channel correlation, and NOMA technology is employed to serve the users. In addition, a low-complexity forced-zero method is utilized to design digital precoding in order to eliminate inter-cluster interference. On this basis, we propose a secure transmission scheme to maximize the sum secrecy rate by jointly optimizing the power allocation and phase shifts of IRS subject to the total transmit power budget, minimal achievable rate requirement of each user, and IRS reflection coefficients. Due to multiple coupled variables, the formulated problem leads to a non-convex issue. We apply the Taylor series expansion and semidefinite programming to convert the original non-convex problem into a convex one. Then, an alternating optimization algorithm is developed to obtain a feasible solution of the original problem. Simulation results verify the convergence of the proposed algorithm, and deploying IRS can bring significant beamforming gains to suppress the eavesdropping.
The Poisson-Boltzmann equation (PBE) is an implicit solvent continuum model for calculating the electrostatic potential and energies of ionic solvated biomolecules. However, its numerical solution remains a significant challenge due strong singularities and nonlinearity caused by the singular source terms and the exponential nonlinear terms, respectively. An efficient method for the treatment of singularities in the linear PBE was introduced in \cite{BeKKKS:18}, that is based on the RS tensor decomposition for both electrostatic potential and the discretized Dirac delta distribution. In this paper, we extend this regularization method to the nonlinear PBE. We apply the PBE only to the regular part of the solution corresponding to the modified right-hand side via extraction of the long-range part in the discretized Dirac delta distribution. The total electrostatic potential is obtained by adding the long-range solution to the directly precomputed short-range potential. The main computational benefit of the approach is the automatic maintaining of the continuity in the Cauchy data on the solute-solvent interface. The boundary conditions are also obtained from the long-range component of the precomputed canonical tensor representation of the Newton kernel. In the numerical experiments, we illustrate the accuracy of the nonlinear regularized PBE (NRPBE) over the classical variant.
In this paper, we initiate the study of rate-splitting multiple access (RSMA) for a mono-static integrated sensing and communication (ISAC) system, where the dual-functional base station (BS) simultaneously communicates with multiple users and detects multiple moving targets. We aim at optimizing the ISAC waveform to jointly maximize the max-min fairness (MMF) rate of the communication users and minimize the largest eigenvalue of the Cram\'er-Rao bound (CRB) matrix for unbiased estimation. The CRB matrix considered in this work is general as it involves the estimation of angular direction, complex reflection coefficient, and Doppler frequency for multiple moving targets. Simulation results demonstrate that RSMA maintains a larger communication and sensing trade-off than conventional space-division multiple access (SDMA) and it is capable of detecting multiple targets with a high detection accuracy. The finding highlights the potential of RSMA as an effective and powerful strategy for interference management in the general multi-user multi-target ISAC systems.
Demographic parity is the most widely recognized measure of group fairness in machine learning, which ensures equal treatment of different demographic groups. Numerous works aim to achieve demographic parity by pursuing the commonly used metric $\Delta DP$. Unfortunately, in this paper, we reveal that the fairness metric $\Delta DP$ can not precisely measure the violation of demographic parity, because it inherently has the following drawbacks: i) zero-value $\Delta DP$ does not guarantee zero violation of demographic parity, ii) $\Delta DP$ values can vary with different classification thresholds. To this end, we propose two new fairness metrics, Area Between Probability density function Curves (ABPC) and Area Between Cumulative density function Curves (ABCC), to precisely measure the violation of demographic parity at the distribution level. The new fairness metrics directly measure the difference between the distributions of the prediction probability for different demographic groups. Thus our proposed new metrics enjoy: i) zero-value ABCC/ABPC guarantees zero violation of demographic parity; ii) ABCC/ABPC guarantees demographic parity while the classification thresholds are adjusted. We further re-evaluate the existing fair models with our proposed fairness metrics and observe different fairness behaviors of those models under the new metrics. The code is available at //github.com/ahxt/new_metric_for_demographic_parity
The sixth-generation (6G) wireless technology recognizes the potential of reconfigurable intelligent surfaces (RIS) as an effective technique for intelligently manipulating channel paths through reflection to serve desired users. Full-duplex (FD) systems, enabling simultaneous transmission and reception from a base station (BS), offer the theoretical advantage of doubled spectrum efficiency. However, the presence of strong self-interference (SI) in FD systems significantly degrades performance, which can be mitigated by leveraging the capabilities of RIS. Moreover, accurately obtaining channel state information (CSI) from RIS poses a critical challenge. Our objective is to maximize downlink (DL) user data rates while ensuring quality-of-service (QoS) for uplink (UL) users under imperfect CSI from reflected channels. To address this, we introduce the robust active BS and passive RIS beamforming (RAPB) scheme for RIS-FD, accounting for both SI and imperfect CSI. RAPB incorporates distributionally robust design, conditional value-at-risk (CVaR), and penalty convex-concave programming (PCCP) techniques. Additionally, RAPB extends to active and passive beamforming (APB) with perfect channel estimation. Simulation results demonstrate the UL/DL rate improvements achieved considering various levels of imperfect CSI. The proposed RAPB/APB schemes validate their effectiveness across different RIS deployment and RIS/BS configurations. Benefited from robust beamforming, RAPB outperforms existing methods in terms of non-robustness, deployment without RIS, conventional successive convex approximation, and half-duplex systems.
We study a decentralized multi-agent multi-armed bandit problem in which multiple clients are connected by time dependent random graphs provided by an environment. The reward distributions of each arm vary across clients and rewards are generated independently over time by an environment based on distributions that include both sub-exponential and sub-gaussian distributions. Each client pulls an arm and communicates with neighbors based on the graph provided by the environment. The goal is to minimize the overall regret of the entire system through collaborations. To this end, we introduce a novel algorithmic framework, which first provides robust simulation methods for generating random graphs using rapidly mixing Markov chains or the random graph model, and then combines an averaging-based consensus approach with a newly proposed weighting technique and the upper confidence bound to deliver a UCB-type solution. Our algorithms account for the randomness in the graphs, removing the conventional doubly stochasticity assumption, and only require the knowledge of the number of clients at initialization. We derive optimal instance-dependent regret upper bounds of order $\log{T}$ in both sub-gaussian and sub-exponential environments, and a nearly optimal mean-gap independent regret upper bound of order $\sqrt{T}\log T$ up to a $\log T$ factor. Importantly, our regret bounds hold with high probability and capture graph randomness, whereas prior works consider expected regret under assumptions and require more stringent reward distributions.
This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.