亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Problems on repeated geometric patterns in finite point sets in Euclidean space are extensively studied in the literature of combinatorial and computational geometry. Such problems trace their inspiration to Erd\H{o}s' original work on that topic. In this paper, we investigate the particular case of finding scaled copies of any pattern within a set of $n$ points, that is, the algorithmic task of efficiently enumerating all such copies. We initially focus on one particularly simple pattern of axis-parallel squares, and present an algorithm with an $O(n\sqrt{n})$ running time and $O(n)$ space for this task, involving various bucket-based and sweep-line techniques. Our algorithm is worst-case optimal, as it matches the known lower bound of $\Omega(n\sqrt{n})$ on the maximum number of axis-parallel squares determined by $n$ points in the plane, thereby solving an open question for more than three decades of realizing that bound for this pattern. We extend our result to an algorithm that enumerates all copies, up to scaling, of any full-dimensional fixed set of points in $d$-dimensional Euclidean space, that works in time $O(n^{1+1/d})$ and space $O(n)$, also matching the corresponding lower bound due to Elekes and Erd\H{o}s.

相關內容

In this paper, an upwind GFDM is developed for the coupled heat and mass transfer problems in porous media. GFDM is a meshless method that can obtain the difference schemes of spatial derivatives by using Taylor expansion in local node influence domains and the weighted least squares method. The first-order single-point upstream scheme in the FDM/FVM-based reservoir simulator is introduced to GFDM to form the upwind GFDM, based on which, a sequential coupled discrete scheme of the pressure diffusion equation and the heat convection-conduction equation is solved to obtain pressure and temperature profiles. This paper demonstrates that this method can be used to obtain the meshless solution of the convection-diffusion equation with a stable upwind effect. For porous flow problems, the upwind GFDM is more practical and stable than the method of manually adjusting the influence domain based on the prior information of the flow field to achieve the upwind effect. Two types of calculation errors are analyzed, and three numerical examples are implemented to illustrate the good calculation accuracy and convergence of the upwind GFDM for heat and mass transfer problems in porous media, and indicate the increase of the radius of the node influence domain will increase the calculation error of temperature profiles. Overall, the upwind GFDM discretizes the computational domain using only a point cloud that is generated with much less topological constraints than the generated mesh, but achieves good computational performance as the mesh-based approaches, and therefore has great potential to be developed as a general-purpose numerical simulator for various porous flow problems in domains with complex geometry.

The Schrijver graph $S(n,k)$ is defined for integers $n$ and $k$ with $n \geq 2k$ as the graph whose vertices are all the $k$-subsets of $\{1,2,\ldots,n\}$ that do not include two consecutive elements modulo $n$, where two such sets are adjacent if they are disjoint. A result of Schrijver asserts that the chromatic number of $S(n,k)$ is $n-2k+2$ (Nieuw Arch. Wiskd., 1978). In the computational Schrijver problem, we are given an access to a coloring of the vertices of $S(n,k)$ with $n-2k+1$ colors, and the goal is to find a monochromatic edge. The Schrijver problem is known to be complete in the complexity class $\mathsf{PPA}$. We prove that it can be solved by a randomized algorithm with running time $n^{O(1)} \cdot k^{O(k)}$, hence it is fixed-parameter tractable with respect to the parameter $k$.

In this paper we generalize Dillon's switching method to characterize the exact $c$-differential uniformity of functions constructed via this method. More precisely, we modify some PcN/APcN and other functions with known $c$-differential uniformity in a controllable number of coordinates to render more such functions. We present several applications of the method in constructing PcN and APcN functions with respect to all $c\neq 1$. As a byproduct, we generalize some result of [Y. Wu, N. Li, X. Zeng, {\em New PcN and APcN functions over finite fields}, Designs Codes Crypt. 89 (2021), 2637--2651]. Computational results rendering functions with low differential uniformity, as well as, other good cryptographic properties are sprinkled throughout the paper.

Given a set $P$ of $n$ points in the plane, the $k$-center problem is to find $k$ congruent disks of minimum possible radius such that their union covers all the points in $P$. The $2$-center problem is a special case of the $k$-center problem that has been extensively studied in the recent past \cite{CAHN,HT,SH}. In this paper, we consider a generalized version of the $2$-center problem called \textit{proximity connected} $2$-center (PCTC) problem. In this problem, we are also given a parameter $\delta\geq 0$ and we have the additional constraint that the distance between the centers of the disks should be at most $\delta$. Note that when $\delta=0$, the PCTC problem is reduced to the $1$-center(minimum enclosing disk) problem and when $\delta$ tends to infinity, it is reduced to the $2$-center problem. The PCTC problem first appeared in the context of wireless networks in 1992 \cite{ACN0}, but obtaining a nontrivial deterministic algorithm for the problem remained open. In this paper, we resolve this open problem by providing a deterministic $O(n^2\log n)$ time algorithm for the problem.

In this paper we propose a methodology to accelerate the resolution of the so-called "Sorted L-One Penalized Estimation" (SLOPE) problem. Our method leverages the concept of "safe screening", well-studied in the literature for \textit{group-separable} sparsity-inducing norms, and aims at identifying the zeros in the solution of SLOPE. More specifically, we derive a set of \(\tfrac{n(n+1)}{2}\) inequalities for each element of the \(n\)-dimensional primal vector and prove that the latter can be safely screened if some subsets of these inequalities are verified. We propose moreover an efficient algorithm to jointly apply the proposed procedure to all the primal variables. Our procedure has a complexity \(\mathcal{O}(n\log n + LT)\) where \(T\leq n\) is a problem-dependent constant and \(L\) is the number of zeros identified by the tests. Numerical experiments confirm that, for a prescribed computational budget, the proposed methodology leads to significant improvements of the solving precision.

This paper makes the first attempt to apply newly developed upwind GFDM for the meshless solution of two-phase porous flow equations. In the presented method, node cloud is used to flexibly discretize the computational domain, instead of complicated mesh generation. Combining with moving least square approximation and local Taylor expansion, spatial derivatives of oil-phase pressure at a node are approximated by generalized difference operators in the local influence domain of the node. By introducing the first-order upwind scheme of phase relative permeability, and combining the discrete boundary conditions, fully-implicit GFDM-based nonlinear discrete equations of the immiscible two-phase porous flow are obtained and solved by the nonlinear solver based on the Newton iteration method with the automatic differentiation, to avoid the additional computational cost and possible computational instability caused by sequentially coupled scheme. Two numerical examples are implemented to test the computational performances of the presented method. Detailed error analysis finds the two sources of the calculation error, roughly studies the convergence order thus find that the low-order error of GFDM makes the convergence order of GFDM lower than that of FDM when node spacing is small, and points out the significant effect of the symmetry or uniformity of the node collocation in the node influence domain on the accuracy of generalized difference operators, and the radius of the node influence domain should be small to achieve high calculation accuracy, which is a significant difference between the studied hyperbolic two-phase porous flow problem and the elliptic problems when GFDM is applied.

There has been an arising trend of adopting deep learning methods to study partial differential equations (PDEs). This article is to propose a Deep Learning Galerkin Method (DGM) for the closed-loop geothermal system, which is a new coupled multi-physics PDEs and mainly consists of a framework of underground heat exchange pipelines to extract the geothermal heat from the geothermal reservoir. This method is a natural combination of Galerkin Method and machine learning with the solution approximated by a neural network instead of a linear combination of basis functions. We train the neural network by randomly sampling the spatiotemporal points and minimize loss function to satisfy the differential operators, initial condition, boundary and interface conditions. Moreover, the approximate ability of the neural network is proved by the convergence of the loss function and the convergence of the neural network to the exact solution in L^2 norm under certain conditions. Finally, some numerical examples are carried out to demonstrate the approximation ability of the neural networks intuitively.

Similarity query is the family of queries based on some similarity metrics. Unlike the traditional database queries which are mostly based on value equality, similarity queries aim to find targets "similar enough to" the given data objects, depending on some similarity metric, e.g., Euclidean distance, cosine similarity and so on. To measure the similarity between data objects, traditional methods normally work on low level or syntax features(e.g., basic visual features on images or bag-of-word features of text), which makes them weak to compute the semantic similarities between objects. So for measuring data similarities semantically, neural embedding is applied. Embedding techniques work by representing the raw data objects as vectors (so called "embeddings" or "neural embeddings" since they are mostly generated by neural network models) that expose the hidden semantics of the raw data, based on which embeddings do show outstanding effectiveness on capturing data similarities, making it one of the most widely used and studied techniques in the state-of-the-art similarity query processing research. But there are still many open challenges on the efficiency of embedding based similarity query processing, which are not so well-studied as the effectiveness. In this survey, we first provide an overview of the "similarity query" and "similarity query processing" problems. Then we talk about recent approaches on designing the indexes and operators for highly efficient similarity query processing on top of embeddings (or more generally, high dimensional data). Finally, we investigate the specific solutions with and without using embeddings in selected application domains of similarity queries, including entity resolution and information retrieval. By comparing the solutions, we show how neural embeddings benefit those applications.

With the field of rigid-body robotics having matured in the last fifty years, routing, planning, and manipulation of deformable objects have recently emerged as a more untouched research area in many fields ranging from surgical robotics to industrial assembly and construction. Routing approaches for deformable objects which rely on learned implicit spatial representations (e.g., Learning-from-Demonstration methods) make them vulnerable to changes in the environment and the specific setup. On the other hand, algorithms that entirely separate the spatial representation of the deformable object from the routing and manipulation, often using a representation approach independent of planning, result in slow planning in high dimensional space. This paper proposes a novel approach to routing deformable one-dimensional objects (e.g., wires, cables, ropes, sutures, threads). This approach utilizes a compact representation for the object, allowing efficient and fast online routing. The spatial representation is based on the geometrical decomposition of the space into convex subspaces, resulting in a discrete coding of the deformable object configuration as a sequence. With such a configuration, the routing problem can be solved using a fast dynamic programming sequence matching method that calculates the next routing move. The proposed method couples the routing and efficient configuration for improved planning time. Our simulation and real experiments show the method correctly computing the next manipulation action in sub-millisecond time and accomplishing various routing and manipulation tasks.

Given a matrix $A$ and vector $b$ with polynomial entries in $d$ real variables $\delta=(\delta_1,\ldots,\delta_d)$ we consider the following notion of feasibility: the pair $(A,b)$ is locally feasible if there exists an open neighborhood $U$ of $0$ such that for every $\delta\in U$ there exists $x$ satisfying $A(\delta)x\ge b(\delta)$ entry-wise. For $d=1$ we construct a polynomial time algorithm for deciding local feasibility. For $d \ge 2$ we show local feasibility is NP-hard. As an application (which was the primary motivation for this work) we give a computer-assisted proof of ergodicity of the following elementary 1D cellular automaton: given the current state $\eta_t \in \{0,1\}^{\mathbb{Z}}$ the next state $\eta_{t+1}(n)$ at each vertex $n\in \mathbb{Z}$ is obtained by $\eta_{t+1}(n)= \text{NAND}\big(\text{BSC}_\delta(\eta_t(n-1)), \text{BSC}_\delta(\eta_t(n))\big)$. Here the binary symmetric channel $\text{BSC}_\delta$ takes a bit as input and flips it with probability $\delta$ (and leaves it unchanged with probability $1-\delta$). We also consider the problem of broadcasting information on the 2D-grid of noisy binary-symmetric channels $\text{BSC}_\delta$, where each node may apply an arbitrary processing function to its input bits. We prove that there exists $\delta_0'>0$ such that for all noise levels $0<\delta<\delta_0'$ it is impossible to broadcast information for any processing function, as conjectured in Makur, Mossel, Polyanskiy (ISIT 2021).

北京阿比特科技有限公司