亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There has been an arising trend of adopting deep learning methods to study partial differential equations (PDEs). This article is to propose a Deep Learning Galerkin Method (DGM) for the closed-loop geothermal system, which is a new coupled multi-physics PDEs and mainly consists of a framework of underground heat exchange pipelines to extract the geothermal heat from the geothermal reservoir. This method is a natural combination of Galerkin Method and machine learning with the solution approximated by a neural network instead of a linear combination of basis functions. We train the neural network by randomly sampling the spatiotemporal points and minimize loss function to satisfy the differential operators, initial condition, boundary and interface conditions. Moreover, the approximate ability of the neural network is proved by the convergence of the loss function and the convergence of the neural network to the exact solution in L^2 norm under certain conditions. Finally, some numerical examples are carried out to demonstrate the approximation ability of the neural networks intuitively.

相關內容

神經網絡(Neural Networks)是世界上三個最古老的神經建模學會的檔案期刊:國際神經網絡學會(INNS)、歐洲神經網絡學會(ENNS)和日本神經網絡學會(JNNS)。神經網絡提供了一個論壇,以發展和培育一個國際社會的學者和實踐者感興趣的所有方面的神經網絡和相關方法的計算智能。神經網絡歡迎高質量論文的提交,有助于全面的神經網絡研究,從行為和大腦建模,學習算法,通過數學和計算分析,系統的工程和技術應用,大量使用神經網絡的概念和技術。這一獨特而廣泛的范圍促進了生物和技術研究之間的思想交流,并有助于促進對生物啟發的計算智能感興趣的跨學科社區的發展。因此,神經網絡編委會代表的專家領域包括心理學,神經生物學,計算機科學,工程,數學,物理。該雜志發表文章、信件和評論以及給編輯的信件、社論、時事、軟件調查和專利信息。文章發表在五個部分之一:認知科學,神經科學,學習系統,數學和計算分析、工程和應用。 官網地址:

In this work, we provide a fundamental unified convergence theorem used for deriving expected and almost sure convergence results for a series of stochastic optimization methods. Our unified theorem only requires to verify several representative conditions and is not tailored to any specific algorithm. As a direct application, we recover expected and almost sure convergence results of the stochastic gradient method (SGD) and random reshuffling (RR) under more general settings. Moreover, we establish new expected and almost sure convergence results for the stochastic proximal gradient method (prox-SGD) and stochastic model-based methods (SMM) for nonsmooth nonconvex optimization problems. These applications reveal that our unified theorem provides a plugin-type convergence analysis and strong convergence guarantees for a wide class of stochastic optimization methods.

Each year, deep learning demonstrates new and improved empirical results with deeper and wider neural networks. Meanwhile, with existing theoretical frameworks, it is difficult to analyze networks deeper than two layers without resorting to counting parameters or encountering sample complexity bounds that are exponential in depth. Perhaps it may be fruitful to try to analyze modern machine learning under a different lens. In this paper, we propose a novel information-theoretic framework with its own notions of regret and sample complexity for analyzing the data requirements of machine learning. With our framework, we first work through some classical examples such as scalar estimation and linear regression to build intuition and introduce general techniques. Then, we use the framework to study the sample complexity of learning from data generated by deep sign neural networks, deep ReLU neural networks, and deep networks that are infinitely wide but have a bounded sum of weights. For sign neural networks, we recover sample-complexity bounds that follow from VC-dimension based arguments. For the latter two neural network environments, we establish new results that suggest that the sample complexity of learning under these data generating processes is at most linear and quadratic, respectively, in network depth.

We provide sharp path-dependent generalization and excess risk guarantees for the full-batch Gradient Descent (GD) algorithm on smooth losses (possibly non-Lipschitz, possibly nonconvex), under an interpolation regime. At the heart of our analysis is a new generalization error bound for deterministic symmetric algorithms, which implies that average output stability and a bounded expected optimization error at termination lead to generalization. This result shows that small generalization error occurs along the optimization path, and allows us to bypass Lipschitz or sub-Gaussian assumptions on the loss prevalent in previous works. For nonconvex, Polyak-Lojasiewicz (PL), convex and strongly convex losses, we show the explicit dependence of the generalization error in terms of the accumulated path-dependent optimization error, terminal optimization error, number of samples, and number of iterations. For nonconvex smooth losses, we prove that full-batch GD efficiently generalizes close to any stationary point at termination, under the proper choice of a decreasing step size. Further, if the loss is nonconvex but the objective is PL, we derive quadratically vanishing bounds on the generalization error and the corresponding excess risk, for a choice of a large constant step size. For (resp. strongly-) convex smooth losses, we prove that full-batch GD also generalizes for large constant step sizes, and achieves (resp. quadratically) small excess risk while training fast. In all cases, we close the generalization error gap, by showing matching generalization and optimization error rates. Our full-batch GD generalization error and excess risk bounds are strictly tighter than existing bounds for (stochastic) GD, when the loss is smooth (but possibly non-Lipschitz).

Physics-informed neural networks (PiNNs) recently emerged as a powerful solver for a large class of partial differential equations under various initial and boundary conditions. In this paper, we propose trapz-PiNNs, physics-informed neural networks incorporated with a modified trapezoidal rule recently developed for accurately evaluating fractional laplacian and solve the space-fractional Fokker-Planck equations in 2D and 3D. We describe the modified trapezoidal rule in detail and verify the second-order accuracy. We demonstrate trapz-PiNNs have high expressive power through predicting solution with low $\mathcal{L}^2$ relative error on a variety of numerical examples. We also use local metrics such as pointwise absolute and relative errors to analyze where could be further improved. We present an effective method for improving performance of trapz-PiNN on local metrics, provided that physical observations of high-fidelity simulation of the true solution are available. Besides the usual advantages of the deep learning solvers such as adaptivity and mesh-independence, the trapz-PiNN is able to solve PDEs with fractional laplacian with arbitrary $\alpha\in (0,2)$ and specializes on rectangular domain. It also has potential to be generalized into higher dimensions.

We study the $L^1$-approximation of the log-Heston SDE at equidistant time points by Euler-type methods. We establish the convergence order $ 1/2-\epsilon$ for $\epsilon >0$ arbitrarily small, if the Feller index $\nu$ of the underlying CIR process satisfies $\nu > 1$. Thus, we recover the standard convergence order of the Euler scheme for SDEs with globally Lipschitz coefficients. Moreover, we discuss the case $\nu \leq 1$ and illustrate our findings by several numerical examples.

Constrained optimization problems can be difficult because their search spaces have properties not conducive to search, e.g., multimodality, discontinuities, or deception. To address such difficulties, considerable research has been performed on creating novel evolutionary algorithms or specialized genetic operators. However, if the representation that defined the search space could be altered such that it only permitted valid solutions that satisfied the constraints, the task of finding the optimal would be made more feasible without any need for specialized optimization algorithms. We propose Constrained Optimization in Latent Space (COIL), which uses a VAE to generate a learned latent representation from a dataset comprising samples from the valid region of the search space according to a constraint, thus enabling the optimizer to find the objective in the new space defined by the learned representation. Preliminary experiments show promise: compared to an identical GA using a standard representation that cannot meet the constraints or find fit solutions, COIL with its learned latent representation can perfectly satisfy different types of constraints while finding high-fitness solutions.

We introduce a new type of Krasnoselskii's result. Using a simple differentiability condition, we relax the nonexpansive condition in Krasnoselskii's theorem. More clearly, we analyze the convergence of the sequence $x_{n+1}=\frac{x_n+g(x_n)}{2}$ based on some differentiability condition of $g$ and present some fixed point results. We introduce some iterative sequences that for any real differentiable function $g$ and any starting point $x_0\in \mathbb [a,b]$ converge monotonically to the nearest root of $g$ in $[a,b]$ that lay to the right or left side of $x_0$. Based on this approach, we present an efficient and novel method for finding the real roots of real functions. We prove that no root will be missed in our method. It is worth mentioning that our iterative method is free from the derivative evaluation which can be regarded as an advantage of this method in comparison with many other methods. Finally, we illustrate our results with some numerical examples.

This paper studies an intriguing phenomenon related to the good generalization performance of estimators obtained by using large learning rates within gradient descent algorithms. First observed in the deep learning literature, we show that a phenomenon can be precisely characterized in the context of kernel methods, even though the resulting optimization problem is convex. Specifically, we consider the minimization of a quadratic objective in a separable Hilbert space, and show that with early stopping, the choice of learning rate influences the spectral decomposition of the obtained solution on the Hessian's eigenvectors. This extends an intuition described by Nakkiran (2020) on a two-dimensional toy problem to realistic learning scenarios such as kernel ridge regression. While large learning rates may be proven beneficial as soon as there is a mismatch between the train and test objectives, we further explain why it already occurs in classification tasks without assuming any particular mismatch between train and test data distributions.

This paper introduces two methods of creating differentially private (DP) synthetic data that are now incorporated into the \textit{synthpop} package for \textbf{R}. Both are suitable for synthesising categorical data, or numeric data grouped into categories. Ten data sets with varying characteristics were used to evaluate the methods. Measures of disclosiveness and of utility were defined and calculated The first method is to add DP noise to a cross tabulation of all the variables and create synthetic data by a multinomial sample from the resulting probabilities. While this method certainly reduced disclosure risk, it did not provide synthetic data of adequate quality for any of the data sets. The other method is to create a set of noisy marginal distributions that are made to agree with each other with an iterative proportional fitting algorithm and then to use the fitted probabilities as above. This proved to provide useable synthetic data for most of these data sets at values of the differentially privacy parameter $\epsilon$ as low as 0.5. The relationship between the disclosure risk and $\epsilon$ is illustrated for each of the data sets. Results show how the trade-off between disclosiveness and data utility depend on the characteristics of the data sets.

In this paper, we study a sequential decision-making problem, called Adaptive Sampling for Discovery (ASD). Starting with a large unlabeled dataset, algorithms for ASD adaptively label the points with the goal to maximize the sum of responses. This problem has wide applications to real-world discovery problems, for example drug discovery with the help of machine learning models. ASD algorithms face the well-known exploration-exploitation dilemma. The algorithm needs to choose points that yield information to improve model estimates but it also needs to exploit the model. We rigorously formulate the problem and propose a general information-directed sampling (IDS) algorithm. We provide theoretical guarantees for the performance of IDS in linear, graph and low-rank models. The benefits of IDS are shown in both simulation experiments and real-data experiments for discovering chemical reaction conditions.

北京阿比特科技有限公司