亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies an intriguing phenomenon related to the good generalization performance of estimators obtained by using large learning rates within gradient descent algorithms. First observed in the deep learning literature, we show that a phenomenon can be precisely characterized in the context of kernel methods, even though the resulting optimization problem is convex. Specifically, we consider the minimization of a quadratic objective in a separable Hilbert space, and show that with early stopping, the choice of learning rate influences the spectral decomposition of the obtained solution on the Hessian's eigenvectors. This extends an intuition described by Nakkiran (2020) on a two-dimensional toy problem to realistic learning scenarios such as kernel ridge regression. While large learning rates may be proven beneficial as soon as there is a mismatch between the train and test objectives, we further explain why it already occurs in classification tasks without assuming any particular mismatch between train and test data distributions.

相關內容

This paper first strictly proved that the growth of the second moment of a large class of Gaussian processes is not greater than power function and the covariance matrix is strictly positive definite. Under these two conditions, the maximum likelihood estimators of the mean and variance of such classes of drift Gaussian process have strong consistency under broader growth of t_n. At the same time, the asymptotic normality of binary random vectors and the Berry-Ess\'{e}en bound of estimators are obtained by using the Stein's method via Malliavian calculus.

A new decomposition method for nonstationary signals, named Adaptive Local Iterative Filtering (ALIF), has been recently proposed in the literature. Given its similarity with the Empirical Mode Decomposition (EMD) and its more rigorous mathematical structure, which makes feasible to study its convergence compared to EMD, ALIF has really good potentiality to become a reference method in the analysis of signals containing strong nonstationary components, like chirps, multipaths and whistles, in many applications, like Physics, Engineering, Medicine and Finance, to name a few. In [11], the authors analyzed the spectral properties of the matrices produced by the ALIF method, in order to study its stability. Various results are achieved in that work through the use of Generalized Locally Toeplitz (GLT) sequences theory, a powerful tool originally designed to extract information on the asymptotic behavior of the spectra for PDE discretization matrices. In this manuscript we focus on answering some of the open questions contained in [11], and in doing so, we also develop new theory and results for the GLT sequences.

We propose a new framework for differentially private optimization of convex functions which are Lipschitz in an arbitrary norm $\normx{\cdot}$. Our algorithms are based on a regularized exponential mechanism which samples from the density $\propto \exp(-k(F+\mu r))$ where $F$ is the empirical loss and $r$ is a regularizer which is strongly convex with respect to $\normx{\cdot}$, generalizing a recent work of \cite{GLL22} to non-Euclidean settings. We show that this mechanism satisfies Gaussian differential privacy and solves both DP-ERM (empirical risk minimization) and DP-SCO (stochastic convex optimization), by using localization tools from convex geometry. Our framework is the first to apply to private convex optimization in general normed spaces, and directly recovers non-private SCO rates achieved by mirror descent, as the privacy parameter $\eps \to \infty$. As applications, for Lipschitz optimization in $\ell_p$ norms for all $p \in (1, 2)$, we obtain the first optimal privacy-utility tradeoffs; for $p = 1$, we improve tradeoffs obtained by the recent works \cite{AsiFKT21, BassilyGN21} by at least a logarithmic factor. Our $\ell_p$ norm and Schatten-$p$ norm optimization frameworks are complemented with polynomial-time samplers whose query complexity we explicitly bound.

Zeroth-order optimization methods are developed to overcome the practical hurdle of having knowledge of explicit derivatives. Instead, these schemes work with merely access to noisy functions evaluations. The predominant approach is to mimic first-order methods by means of some gradient estimator. The theoretical limitations are well-understood, yet, as most of these methods rely on finite-differencing for shrinking differences, numerical cancellation can be catastrophic. The numerical community developed an efficient method to overcome this by passing to the complex domain. This approach has been recently adopted by the optimization community and in this work we analyze the practically relevant setting of dealing with computational noise. To exemplify the possibilities we focus on the strongly-convex optimization setting and provide a variety of non-asymptotic results, corroborated by numerical experiments, and end with local non-convex optimization.

Federated Learning has been introduced as a new machine learning paradigm enhancing the use of local devices. At a server level, FL regularly aggregates models learned locally on distributed clients to obtain a more general model. In this way, no private data is sent over the network, and the communication cost is reduced. However, current solutions rely on the availability of large amounts of stored data at the client side in order to fine-tune the models sent by the server. Such setting is not realistic in mobile pervasive computing where data storage must be kept low and data characteristic (distribution) can change dramatically. To account for this variability, a solution is to use the data regularly collected by the client to progressively adapt the received model. But such naive approach exposes clients to the well-known problem of catastrophic forgetting. The purpose of this paper is to demonstrate this problem in the mobile human activity recognition context on smartphones.

We consider federated learning with personalization, where in addition to a global objective, each client is also interested in maximizing a personalized local objective. We consider this problem under a general continuous action space setting where the objective functions belong to a reproducing kernel Hilbert space. We propose algorithms based on surrogate Gaussian process (GP) models that achieve the optimal regret order (up to polylogarithmic factors). Furthermore, we show that the sparse approximations of the GP models significantly reduce the communication cost across clients.

We propose and study kernel conjugate gradient methods (KCGM) with random projections for least-squares regression over a separable Hilbert space. Considering two types of random projections generated by randomized sketches and Nystr\"{o}m subsampling, we prove optimal statistical results with respect to variants of norms for the algorithms under a suitable stopping rule. Particularly, our results show that if the projection dimension is proportional to the effective dimension of the problem, KCGM with randomized sketches can generalize optimally, while achieving a computational advantage. As a corollary, we derive optimal rates for classic KCGM in the well-conditioned regimes for the case that the target function may not be in the hypothesis space.

The core of information retrieval (IR) is to identify relevant information from large-scale resources and return it as a ranked list to respond to user's information need. Recently, the resurgence of deep learning has greatly advanced this field and leads to a hot topic named NeuIR (i.e., neural information retrieval), especially the paradigm of pre-training methods (PTMs). Owing to sophisticated pre-training objectives and huge model size, pre-trained models can learn universal language representations from massive textual data, which are beneficial to the ranking task of IR. Since there have been a large number of works dedicating to the application of PTMs in IR, we believe it is the right time to summarize the current status, learn from existing methods, and gain some insights for future development. In this survey, we present an overview of PTMs applied in different components of IR system, including the retrieval component, the re-ranking component, and other components. In addition, we also introduce PTMs specifically designed for IR, and summarize available datasets as well as benchmark leaderboards. Moreover, we discuss some open challenges and envision some promising directions, with the hope of inspiring more works on these topics for future research.

This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

北京阿比特科技有限公司