亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We prove that every $n$-vertex planar graph $G$ with no triangle sharing an edge with a 4-cycle has independence ratio $n/\alpha(G) \leq 4 - \varepsilon$ for $\varepsilon = 1/30$. This result implies that the same bound holds for 4-cycle-free planar graphs and planar graphs with no adjacent triangles and no triangle sharing an edge with a 5-cycle. For the latter case we strengthen the bound to $\varepsilon = 2/9$.

相關內容

We propose PROPAGATE, a fast approximation framework to estimate distance-based metrics on very large graphs such as the (effective) diameter, the (effective) radius, or the average distance within a small error. The framework assigns seeds to nodes and propagates them in a BFS-like fashion, computing the neighbors set until we obtain either the whole vertex set (the diameter) or a given percentage (the effective diameter). At each iteration, we derive compressed Boolean representations of the neighborhood sets discovered so far. The PROPAGATE framework yields two algorithms: PROPAGATE-P, which propagates all the $s$ seeds in parallel, and PROPAGATE-s which propagates the seeds sequentially. For each node, the compressed representation of the PROPAGATE-P algorithm requires $s$ bits while that of PROPAGATE-S only $1$ bit. Both algorithms compute the average distance, the effective diameter, the diameter, and the connectivity rate within a small error with high probability: for any $\varepsilon>0$ and using $s=\Theta\left(\frac{\log n}{\varepsilon^2}\right)$ sample nodes, the error for the average distance is bounded by $\xi = \frac{\varepsilon \Delta}{\alpha}$, the error for the effective diameter and the diameter are bounded by $\xi = \frac{\varepsilon}{\alpha}$, and the error for the connectivity rate is bounded by $\varepsilon$ where $\Delta$ is the diameter and $\alpha$ is a measure of connectivity of the graph. The time complexity is $\mathcal{O}\left(m\Delta \frac{\log n}{\varepsilon^2}\right)$, where $m$ is the number of edges of the graph. The experimental results show that the PROPAGATE framework improves the current state of the art both in accuracy and speed. Moreover, we experimentally show that PROPAGATE-S is also very efficient for solving the All Pair Shortest Path problem in very large graphs.

We study a kind of new SDE that was arisen from the research on optimization in machine learning, we call it power-law dynamic because its stationary distribution cannot have sub-Gaussian tail and obeys power-law. We prove that the power-law dynamic is ergodic with unique stationary distribution, provided the learning rate is small enough. We investigate its first exist time. In particular, we compare the exit times of the (continuous) power-law dynamic and its discretization. The comparison can help guide machine learning algorithm.

In this paper we study the threshold model of \emph{geometric inhomogeneous random graphs} (GIRGs); a generative random graph model that is closely related to \emph{hyperbolic random graphs} (HRGs). These models have been observed to capture complex real-world networks well with respect to the structural and algorithmic properties. Following comprehensive studies regarding their \emph{connectivity}, i.e., which parts of the graphs are connected, we have a good understanding under which circumstances a \emph{giant} component (containing a constant fraction of the graph) emerges. While previous results are rather technical and challenging to work with, the goal of this paper is to provide more accessible proofs. At the same time we significantly improve the previously known probabilistic guarantees, showing that GIRGs contain a giant component with probability $1 - \exp(-\Omega(n^{(3-\tau)/2}))$ for graph size $n$ and a degree distribution with power-law exponent $\tau \in (2, 3)$. Based on that we additionally derive insights about the connectivity of certain induced subgraphs of GIRGs.

In a Subgraph Problem we are given some graph and want to find a feasible subgraph that optimizes some measure. We consider Multistage Subgraph Problems (MSPs), where we are given a sequence of graph instances (stages) and are asked to find a sequence of subgraphs, one for each stage, such that each is optimal for its respective stage and the subgraphs for subsequent stages are as similar as possible. We present a framework that provides a $(1/\sqrt{2\chi})$-approximation algorithm for the $2$-stage restriction of an MSP if the similarity of subsequent solutions is measured as the intersection cardinality and said MSP is preficient, i.e., we can efficiently find a single-stage solution that prefers some given subset. The approximation factor is dependent on the instance's intertwinement $\chi$, a similarity measure for multistage graphs. We also show that for any MSP, independent of similarity measure and preficiency, given an exact or approximation algorithm for a constant number of stages, we can approximate the MSP for an unrestricted number of stages. Finally, we combine and apply these results and show that the above restrictions describe a very rich class of MSPs and that proving membership for this class is mostly straightforward. As examples, we explicitly state these proofs for natural multistage versions of Perfect Matching, Shortest s-t-Path, Minimum s-t-Cut and further classical problems on bipartite or planar graphs, namely Maximum Cut, Vertex Cover, Independent Set, and Biclique.

A matchstick graph is a plane graph with edges drawn as unit-distance line segments. Harborth introduced these graphs in 1981 and conjectured that the maximum number of edges for a matchstick graph on $n$ vertices is $\lfloor 3n-\sqrt{12n-3} \rfloor$. In this paper we prove this conjecture for all $n\geq 1$. The main geometric ingredient of the proof is an isoperimetric inequality related to L'Huilier's inequality.

Neural architecture search (NAS) for Graph neural networks (GNNs), called NAS-GNNs, has achieved significant performance over manually designed GNN architectures. However, these methods inherit issues from the conventional NAS methods, such as high computational cost and optimization difficulty. More importantly, previous NAS methods have ignored the uniqueness of GNNs, where GNNs possess expressive power without training. With the randomly-initialized weights, we can then seek the optimal architecture parameters via the sparse coding objective and derive a novel NAS-GNNs method, namely neural architecture coding (NAC). Consequently, our NAC holds a no-update scheme on GNNs and can efficiently compute in linear time. Empirical evaluations on multiple GNN benchmark datasets demonstrate that our approach leads to state-of-the-art performance, which is up to $200\times$ faster and $18.8\%$ more accurate than the strong baselines.

Classic learning theory suggests that proper regularization is the key to good generalization and robustness. In classification, current training schemes only target the complexity of the classifier itself, which can be misleading and ineffective. Instead, we advocate directly measuring the complexity of the decision boundary. Existing literature is limited in this area with few well-established definitions of boundary complexity. As a proof of concept, we start by analyzing ReLU neural networks, whose boundary complexity can be conveniently characterized by the number of affine pieces. With the help of tropical geometry, we develop a novel method that can explicitly count the exact number of boundary pieces, and as a by-product, the exact number of total affine pieces. Numerical experiments are conducted and distinctive properties of our boundary complexity are uncovered. First, the boundary piece count appears largely independent of other measures, e.g., total piece count, and $l_2$ norm of weights, during the training process. Second, the boundary piece count is negatively correlated with robustness, where popular robust training techniques, e.g., adversarial training or random noise injection, are found to reduce the number of boundary pieces.

An $(n,m)$-graph is a graph with $n$ types of arcs and $m$ types of edges. A homomorphism of an $(n,m)$-graph $G$ to another $(n,m)$-graph $H$ is a vertex mapping that preserves the adjacencies along with their types and directions. The order of a smallest (with respect to the number of vertices) such $H$ is the $(n,m)$-chromatic number of $G$.Moreover, an $(n,m)$-relative clique $R$ of an $(n,m)$-graph $G$ is a vertex subset of $G$ for which no two distinct vertices of $R$ get identified under any homomorphism of $G$. The $(n,m)$-relative clique number of $G$, denoted by $\omega_{r(n,m)}(G)$, is the maximum $|R|$ such that $R$ is an $(n,m)$-relative clique of $G$. In practice, $(n,m)$-relative cliques are often used for establishing lower bounds of $(n,m)$-chromatic number of graph families. Generalizing an open problem posed by Sopena [Discrete Mathematics 2016] in his latest survey on oriented coloring, Chakroborty, Das, Nandi, Roy and Sen [Discrete Applied Mathematics 2022] conjectured that $\omega_{r(n,m)}(G) \leq 2 (2n+m)^2 + 2$ for any triangle-free planar $(n,m)$-graph $G$ and that this bound is tight for all $(n,m) \neq (0,1)$.In this article, we positively settle this conjecture by improving the previous upper bound of $\omega_{r(n,m)}(G) \leq 14 (2n+m)^2 + 2$ to $\omega_{r(n,m)}(G) \leq 2 (2n+m)^2 + 2$, and by finding examples of triangle-free planar graphs that achieve this bound. As a consequence of the tightness proof, we also establish a new lower bound of $2 (2n+m)^2 + 2$ for the $(n,m)$-chromatic number for the family of triangle-free planar graphs.

Recent years have witnessed significant advances in technologies and services in modern network applications, including smart grid management, wireless communication, cybersecurity as well as multi-agent autonomous systems. Considering the heterogeneous nature of networked entities, emerging network applications call for game-theoretic models and learning-based approaches in order to create distributed network intelligence that responds to uncertainties and disruptions in a dynamic or an adversarial environment. This paper articulates the confluence of networks, games and learning, which establishes a theoretical underpinning for understanding multi-agent decision-making over networks. We provide an selective overview of game-theoretic learning algorithms within the framework of stochastic approximation theory, and associated applications in some representative contexts of modern network systems, such as the next generation wireless communication networks, the smart grid and distributed machine learning. In addition to existing research works on game-theoretic learning over networks, we highlight several new angles and research endeavors on learning in games that are related to recent developments in artificial intelligence. Some of the new angles extrapolate from our own research interests. The overall objective of the paper is to provide the reader a clear picture of the strengths and challenges of adopting game-theoretic learning methods within the context of network systems, and further to identify fruitful future research directions on both theoretical and applied studies.

Message passing Graph Neural Networks (GNNs) provide a powerful modeling framework for relational data. However, the expressive power of existing GNNs is upper-bounded by the 1-Weisfeiler-Lehman (1-WL) graph isomorphism test, which means GNNs that are not able to predict node clustering coefficients and shortest path distances, and cannot differentiate between different d-regular graphs. Here we develop a class of message passing GNNs, named Identity-aware Graph Neural Networks (ID-GNNs), with greater expressive power than the 1-WL test. ID-GNN offers a minimal but powerful solution to limitations of existing GNNs. ID-GNN extends existing GNN architectures by inductively considering nodes' identities during message passing. To embed a given node, ID-GNN first extracts the ego network centered at the node, then conducts rounds of heterogeneous message passing, where different sets of parameters are applied to the center node than to other surrounding nodes in the ego network. We further propose a simplified but faster version of ID-GNN that injects node identity information as augmented node features. Altogether, both versions of ID-GNN represent general extensions of message passing GNNs, where experiments show that transforming existing GNNs to ID-GNNs yields on average 40% accuracy improvement on challenging node, edge, and graph property prediction tasks; 3% accuracy improvement on node and graph classification benchmarks; and 15% ROC AUC improvement on real-world link prediction tasks. Additionally, ID-GNNs demonstrate improved or comparable performance over other task-specific graph networks.

北京阿比特科技有限公司