亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present an approach for designing correct-by-design controllers for cyber-physical systems composed of multiple dynamically interconnected uncertain systems. We consider networked discrete-time uncertain nonlinear systems with additive stochastic noise and model parametric uncertainty. Such settings arise when multiple systems interact in an uncertain environment and only observational data is available. We address two limitations of existing approaches for formal synthesis of controllers for networks of uncertain systems satisfying complex temporal specifications. Firstly, whilst existing approaches rely on the stochasticity to be Gaussian, the heterogeneous nature of composed systems typically yields a more complex stochastic behavior. Secondly, exact models of the systems involved are generally not available or difficult to acquire. To address these challenges, we show how abstraction-based control synthesis for uncertain systems based on sub-probability couplings can be extended to networked systems. We design controllers based on parameter uncertainty sets identified from observational data and approximate possibly arbitrary noise distributions using Gaussian mixture models whilst quantifying the incurred stochastic coupling. Finally, we demonstrate the effectiveness of our approach on a nonlinear package delivery case study with a complex specification, and a platoon of cars.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Double descent presents a counter-intuitive aspect within the machine learning domain, and researchers have observed its manifestation in various models and tasks. While some theoretical explanations have been proposed for this phenomenon in specific contexts, an accepted theory to account for its occurrence in deep learning remains yet to be established. In this study, we revisit the phenomenon of double descent and demonstrate that its occurrence is strongly influenced by the presence of noisy data. Through conducting a comprehensive analysis of the feature space of learned representations, we unveil that double descent arises in imperfect models trained with noisy data. We argue that double descent is a consequence of the model first learning the noisy data until interpolation and then adding implicit regularization via over-parameterization acquiring therefore capability to separate the information from the noise. We postulate that double descent should never occur in well-regularized models.

Zero-shot classification enables text to be classified into classes not seen during training. In this research, we investigate the effectiveness of pre-trained language models to accurately classify responses from Doctors and AI in health consultations through zero-shot learning. Our study aims to determine whether these models can effectively detect if a text originates from human or AI models without specific corpus training. We collect responses from doctors to patient inquiries about their health and pose the same question/response to AI models. While zero-shot language models show a good understanding of language in general, they have limitations in classifying doctor and AI responses in healthcare consultations. This research lays the groundwork for further research into this field of medical text classification, informing the development of more effective approaches to accurately classify doctor-generated and AI-generated text in health consultations.

In this paper we show an effective means of integrating data driven frameworks to sampling based optimal control to vastly reduce the compute time for easy adoption and adaptation to real time applications such as on-road autonomous driving in the presence of dynamic actors. Presented with training examples, a spatio-temporal CNN learns to predict the optimal mean control over a finite horizon that precludes further resampling, an iterative process that makes sampling based optimal control formulations difficult to adopt in real time settings. Generating control samples around the network-predicted optimal mean retains the advantage of sample diversity while enabling real time rollout of trajectories that avoids multiple dynamic obstacles in an on-road navigation setting. Further the 3D CNN architecture implicitly learns the future trajectories of the dynamic agents in the scene resulting in successful collision free navigation despite no explicit future trajectory prediction. We show performance gain over multiple baselines in a number of on-road scenes through closed loop simulations in CARLA. We also showcase the real world applicability of our system by running it on our custom Autonomous Driving Platform (AutoDP).

In this paper, we identify a cultural dominance issue within large language models (LLMs) due to the predominant use of English data in model training (e.g. ChatGPT). LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages. To systematically evaluate the cultural dominance issue, we build a benchmark that consists of both concrete (e.g. holidays and songs) and abstract (e.g. values and opinions) cultural objects. Empirical results show that the representative GPT models suffer from the culture dominance problem, where GPT-4 is the most affected while text-davinci-003 suffers the least from this problem. Our study emphasizes the need for critical examination of cultural dominance and ethical consideration in their development and deployment. We show two straightforward methods in model development (i.e. pretraining on more diverse data) and deployment (e.g. culture-aware prompting) can significantly mitigate the cultural dominance issue in LLMs.

In this paper, we propose a novel method for 3D scene and object reconstruction from sparse multi-view images. Different from previous methods that leverage extra information such as depth or generalizable features across scenes, our approach leverages the scene properties embedded in the multi-view inputs to create precise pseudo-labels for optimization without any prior training. Specifically, we introduce a geometry-guided approach that improves surface reconstruction accuracy from sparse views by leveraging spherical harmonics to predict the novel radiance while holistically considering all color observations for a point in the scene. Also, our pipeline exploits proxy geometry and correctly handles the occlusion in generating the pseudo-labels of radiance, which previous image-warping methods fail to avoid. Our method, dubbed Ray Augmentation (RayAug), achieves superior results on DTU and Blender datasets without requiring prior training, demonstrating its effectiveness in addressing the problem of sparse view reconstruction. Our pipeline is flexible and can be integrated into other implicit neural reconstruction methods for sparse views.

In this paper, we study the problem of computing the majority function by low-depth monotone circuits and a related problem of constructing low-depth sorting networks. We consider both the classical setting with elementary operations of arity $2$ and the generalized setting with operations of arity $k$, where $k$ is a parameter. For both problems and both settings, there are various constructions known, the minimal known depth being logarithmic. However, there is currently no known construction that simultaneously achieves sub-log-squared depth, effective constructability, simplicity, and has a potential to be used in practice. In this paper we make progress towards resolution of this problem. For computing majority by standard monotone circuits (gates of arity 2) we provide an explicit monotone circuit of depth $O(\log_2^{5/3} n)$. The construction is a combination of several known and not too complicated ideas. For arbitrary arity of gates $k$ we provide a new sorting network architecture inspired by representation of inputs as a high-dimensional cube. As a result we provide a simple construction that improves previous upper bound of $4 \log_k^2 n$ to $2 \log_k^2 n$. We prove the similar bound for the depth of the circuit computing majority of $n$ bits consisting of gates computing majority of $k$ bits. Note, that for both problems there is an explicit construction of depth $O(\log_k n)$ known, but the construction is complicated and the constant hidden in $O$-notation is huge.

In this paper, we evaluate the ability of large language models (LLMs) to perform multiple choice symbol binding (MCSB) for multiple choice question answering (MCQA) tasks in zero-shot, one-shot, and few-shot settings. We focus on Vietnamese, with fewer challenging MCQA datasets than in English. The two existing datasets, ViMMRC 1.0 and ViMMRC 2.0, focus on literature. Recent research in Vietnamese natural language processing (NLP) has focused on the Vietnamese National High School Graduation Examination (VNHSGE) from 2019 to 2023 to evaluate ChatGPT. However, these studies have mainly focused on how ChatGPT solves the VNHSGE step by step. We aim to create a novel and high-quality dataset by providing structured guidelines for typing LaTeX formulas for mathematics, physics, chemistry, and biology. This dataset can be used to evaluate the MCSB ability of LLMs and smaller language models (LMs) because it is typed in a strict LaTeX style. We focus on predicting the character (A, B, C, or D) that is the most likely answer to a question, given the context of the question. Our evaluation of six well-known LLMs, namely BLOOMZ-7.1B-MT, LLaMA-2-7B, LLaMA-2-70B, GPT-3, GPT-3.5, and GPT-4.0, on the ViMMRC 1.0 and ViMMRC 2.0 benchmarks and our proposed dataset shows promising results on the MCSB ability of LLMs for Vietnamese. The dataset is available for research purposes only.

In this paper, we study a sampling problem where a source takes samples from a Wiener process and transmits them through a wireless channel to a remote estimator. Due to channel fading, interference, and potential collisions, the packet transmissions are unreliable and could take random time durations. Our objective is to devise an optimal causal sampling policy that minimizes the long-term average mean square estimation error. This optimal sampling problem is a recursive optimal stopping problem, which is generally quite difficult to solve. However, we prove that the optimal sampling strategy is, in fact, a simple threshold policy where a new sample is taken whenever the instantaneous estimation error exceeds a threshold. This threshold remains a constant value that does not vary over time. By exploring the structure properties of the recursive optimal stopping problem, a low-complexity iterative algorithm is developed to compute the optimal threshold. This work generalizes previous research by incorporating both transmission errors and random transmission times into remote estimation. Numerical simulations are provided to compare our optimal policy with the zero-wait and age-optimal policies.

Despite the significant progress made in practical applications of aligned language models (LMs), they tend to be overconfident in output answers compared to the corresponding pre-trained LMs. In this work, we systematically evaluate the impact of the alignment process on logit-based uncertainty calibration of LMs under the multiple-choice setting. We first conduct a thoughtful empirical study on how aligned LMs differ in calibration from their pre-trained counterparts. Experimental results reveal that there are two distinct uncertainties in LMs under the multiple-choice setting, which are responsible for the answer decision and the format preference of the LMs, respectively. Then, we investigate the role of these two uncertainties on aligned LM's calibration through fine-tuning in simple synthetic alignment schemes and conclude that one reason for aligned LMs' overconfidence is the conflation of these two types of uncertainty. Furthermore, we examine the utility of common post-hoc calibration methods for aligned LMs and propose an easy-to-implement and sample-efficient method to calibrate aligned LMs. We hope our findings could provide insights into the design of more reliable alignment processes for LMs.

In this paper, we present a comprehensive review of the imbalance problems in object detection. To analyze the problems in a systematic manner, we introduce a problem-based taxonomy. Following this taxonomy, we discuss each problem in depth and present a unifying yet critical perspective on the solutions in the literature. In addition, we identify major open issues regarding the existing imbalance problems as well as imbalance problems that have not been discussed before. Moreover, in order to keep our review up to date, we provide an accompanying webpage which catalogs papers addressing imbalance problems, according to our problem-based taxonomy. Researchers can track newer studies on this webpage available at: //github.com/kemaloksuz/ObjectDetectionImbalance .

北京阿比特科技有限公司