亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automation of hydraulic material handling machinery is currently limited to semi-static pick-and-place cycles. Dynamic throwing motions which utilize the passive joints, can greatly improve time efficiency as well as increase the dumping workspace. In this work, we use Reinforcement Learning (RL) to design dynamic controllers for material handlers with underactuated arms as commonly used in logistics. The controllers are tested both in simulation and in real-world experiments on a 12-ton test platform. The method is able to exploit the passive joints of the gripper to perform dynamic throwing motions. With the proposed controllers, the machine is able to throw individual objects to targets outside the static reachability zone with good accuracy for its practical applications. The work demonstrates the possibility of using RL to perform highly dynamic tasks with heavy machinery, suggesting a potential for improving the efficiency and precision of autonomous material handling tasks.

相關內容

The nasopharyngeal (NP) swab sample test, commonly used to detect COVID-19 and other respiratory illnesses, involves moving a swab through the nasal cavity to collect samples from the nasopharynx. While typically this is done by human healthcare workers, there is a significant societal interest to enable robots to do this test to reduce exposure to patients and to free up human resources. The task is challenging from the robotics perspective because of the dexterity and safety requirements. While other works have implemented specific hardware solutions, our research differentiates itself by using a ubiquitous rigid robotic arm. This work presents a case study where we investigate the strengths and challenges using compliant control system to accomplish NP swab tests with such a robotic configuration. To accomplish this, we designed a force sensing end-effector that integrates with the proposed torque controlled compliant control loop. We then conducted experiments where the robot inserted NP swabs into a 3D printed nasal cavity phantom. Ultimately, we found that the compliant control system outperformed a basic position controller and shows promise for human use. However, further efforts are needed to ensure the initial alignment with the nostril and to address head motion.

Algorithms for numerical tasks in finite precision simultaneously seek to minimize the number of floating point operations performed, and also the number of bits of precision required by each floating point operation. This paper presents an algorithm for Hermitian diagonalization requiring only $\lg(1/\varepsilon)+O(\log(n)+\log\log(1/\varepsilon))$ bits of precision where $n$ is the size of the input matrix and $\varepsilon$ is the target error. Furthermore, it runs in near matrix multiplication time. In the general setting, the first complete analysis of the stability of a near matrix multiplication time algorithm for diagonalization is that of Banks et al. [BGVKS20]. They exhibit an algorithm for diagonalizing an arbitrary matrix up to $\varepsilon$ backward error using only $O(\log^4(n/\varepsilon)\log(n))$ bits of precision. This work focuses on the Hermitian setting, where we determine a dramatically improved bound on the number of bits needed. In particular, the result is close to providing a practical bound. The exact bit count depends on the specific implementation of matrix multiplication and QR decomposition one wishes to use, but if one uses suitable $O(n^3)$-time implementations, then for $\varepsilon=10^{-15},n=4000$, we show 92 bits of precision suffice (and 59 are necessary). By comparison, the same parameters in [BGVKS20] does not even show that 682,916,525,000 bits suffice.

The modeling and manipulation of 3D scenes captured from the real world are pivotal in various applications, attracting growing research interest. While previous works on editing have achieved interesting results through manipulating 3D meshes, they often require accurately reconstructed meshes to perform editing, which limits their application in 3D content generation. To address this gap, we introduce a novel single-image-driven 3D scene editing approach based on 3D Gaussian Splatting, enabling intuitive manipulation via directly editing the content on a 2D image plane. Our method learns to optimize the 3D Gaussians to align with an edited version of the image rendered from a user-specified viewpoint of the original scene. To capture long-range object deformation, we introduce positional loss into the optimization process of 3D Gaussian Splatting and enable gradient propagation through reparameterization. To handle occluded 3D Gaussians when rendering from the specified viewpoint, we build an anchor-based structure and employ a coarse-to-fine optimization strategy capable of handling long-range deformation while maintaining structural stability. Furthermore, we design a novel masking strategy to adaptively identify non-rigid deformation regions for fine-scale modeling. Extensive experiments show the effectiveness of our method in handling geometric details, long-range, and non-rigid deformation, demonstrating superior editing flexibility and quality compared to previous approaches.

Obtaining accurate probabilistic forecasts is an important operational challenge in many applications, perhaps most obviously in energy management, climate forecasting, supply chain planning, and resource allocation. In many of these applications, there is a natural hierarchical structure over the forecasted quantities; and forecasting systems that adhere to this hierarchical structure are said to be coherent. Furthermore, operational planning benefits from accuracy at all levels of the aggregation hierarchy. Building accurate and coherent forecasting systems, however, is challenging: classic multivariate time series tools and neural network methods are still being adapted for this purpose. In this paper, we augment an MQForecaster neural network architecture with a novel deep Gaussian factor forecasting model that achieves coherence by construction, yielding a method we call the Deep Coherent Factor Model Neural Network (DeepCoFactor) model. DeepCoFactor generates samples that can be differentiated with respect to model parameters, allowing optimization on various sample-based learning objectives that align with the forecasting system's goals, including quantile loss and the scaled Continuous Ranked Probability Score (CRPS). In a comparison to state-of-the-art coherent forecasting methods, DeepCoFactor achieves significant improvements in scaled CRPS forecast accuracy, with gains between 4.16 and 54.40%, as measured on three publicly available hierarchical forecasting datasets.

An excellent representation is crucial for reinforcement learning (RL) performance, especially in vision-based reinforcement learning tasks. The quality of the environment representation directly influences the achievement of the learning task. Previous vision-based RL typically uses explicit or implicit ways to represent environments, such as images, points, voxels, and neural radiance fields. However, these representations contain several drawbacks. They cannot either describe complex local geometries or generalize well to unseen scenes, or require precise foreground masks. Moreover, these implicit neural representations are akin to a ``black box", significantly hindering interpretability. 3D Gaussian Splatting (3DGS), with its explicit scene representation and differentiable rendering nature, is considered a revolutionary change for reconstruction and representation methods. In this paper, we propose a novel Generalizable Gaussian Splatting framework to be the representation of RL tasks, called GSRL. Through validation in the RoboMimic environment, our method achieves better results than other baselines in multiple tasks, improving the performance by 10%, 44%, and 15% compared with baselines on the hardest task. This work is the first attempt to leverage generalizable 3DGS as a representation for RL.

Peer prediction mechanisms motivate high-quality feedback with provable guarantees. However, current methods only apply to rather simple reports, like multiple-choice or scalar numbers. We aim to broaden these techniques to the larger domain of text-based reports, drawing on the recent developments in large language models. This vastly increases the applicability of peer prediction mechanisms as textual feedback is the norm in a large variety of feedback channels: peer reviews, e-commerce customer reviews, and comments on social media. We introduce two mechanisms, the Generative Peer Prediction Mechanism (GPPM) and the Generative Synopsis Peer Prediction Mechanism (GSPPM). These mechanisms utilize LLMs as predictors, mapping from one agent's report to a prediction of her peer's report. Theoretically, we show that when the LLM prediction is sufficiently accurate, our mechanisms can incentivize high effort and truth-telling as an (approximate) Bayesian Nash equilibrium. Empirically, we confirm the efficacy of our mechanisms through experiments conducted on two real datasets: the Yelp review dataset and the ICLR OpenReview dataset. We highlight the results that on the ICLR dataset, our mechanisms can differentiate three quality levels -- human-written reviews, GPT-4-generated reviews, and GPT-3.5-generated reviews in terms of expected scores. Additionally, GSPPM penalizes LLM-generated reviews more effectively than GPPM.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司