We investigate swarms of autonomous mobile robots in the Euclidean plane. Each robot has a target function to determine a destination point from the robots' positions. All robots in a swarm conventionally take the same target function. We allow the robots in a swarm to take different target functions, and investigate the effects of the number of distinct target functions on the problem-solving ability. Specifically, we are interested in how many distinct target functions are necessary and sufficient to solve some known problems which are not solvable when all robots take the same target function, regarding target function as a resource to solve a problem, like time and message. The number of distinct target functions necessary and sufficient to solve a problem $\Pi$ is called the minimum algorithm size (MAS) for $\Pi$. (The MAS is $\infty$, if $\Pi$ is not solvable even for the robots with unique target functions.) We establish the MASs for solving the gathering and related problems from any initial configuration, i.e., in a self-stabilizing manner. Our results include: There is a family of the scattering problems $c$SCT $(1 \leq c \leq n)$ such that the MAS for the $c$SCAT is $c$, where $n$ is the size of the swarm. The MAS for the gathering problem is 2. It is 3, for the problem of gathering all non-faulty robots at a single point, regardless of the number $(< n)$ of crash failures. It is however $\infty$, for the problem of gathering all robots at a single point, in the presence of at most one crash failure.
We present an algorithm that, given a representation of a road network in lane-level detail, computes a route that minimizes the expected cost to reach a given destination. In doing so, our algorithm allows us to solve for the complex trade-offs encountered when trying to decide not just which roads to follow, but also when to change between the lanes making up these roads, in order to -- for example -- reduce the likelihood of missing a left exit while not unnecessarily driving in the leftmost lane. This routing problem can naturally be formulated as a Markov Decision Process (MDP), in which lane change actions have stochastic outcomes. However, MDPs are known to be time-consuming to solve in general. In this paper, we show that -- under reasonable assumptions -- we can use a Dijkstra-like approach to solve this stochastic problem, and benefit from its efficient $O(n \log n)$ running time. This enables an autonomous vehicle to exhibit lane-selection behavior as it efficiently plans an optimal route to its destination.
This paper deals with the trade-off between time, workload, and versatility in self-stabilization, a general and lightweight fault-tolerant concept in distributed computing.In this context, we propose a transformer that provides an asynchronous silent self-stabilizing version Trans(AlgI) of any terminating synchronous algorithm AlgI. The transformed algorithm Trans(AlgI) works under the distributed unfair daemon and is efficient both in moves and rounds.Our transformer allows to easily obtain fully-polynomial silent self-stabilizing solutions that are also asymptotically optimal in rounds.We illustrate the efficiency and versatility of our transformer with several efficient (i.e., fully-polynomial) silent self-stabilizing instances solving major distributed computing problems, namely vertex coloring, Breadth-First Search (BFS) spanning tree construction, k-clustering, and leader election.
We study optimality for the safety-constrained Markov decision process which is the underlying framework for safe reinforcement learning. Specifically, we consider a constrained Markov decision process (with finite states and finite actions) where the goal of the decision maker is to reach a target set while avoiding an unsafe set(s) with certain probabilistic guarantees. Therefore the underlying Markov chain for any control policy will be multichain since by definition there exists a target set and an unsafe set. The decision maker also has to be optimal (with respect to a cost function) while navigating to the target set. This gives rise to a multi-objective optimization problem. We highlight the fact that Bellman's principle of optimality may not hold for constrained Markov decision problems with an underlying multichain structure (as shown by the counterexample due to Haviv. We resolve the counterexample by formulating the aforementioned multi-objective optimization problem as a zero-sum game and thereafter construct an asynchronous value iteration scheme for the Lagrangian (similar to Shapley's algorithm). Finally, we consider the reinforcement learning problem for the same and construct a modified $Q$-learning algorithm for learning the Lagrangian from data. We also provide a lower bound on the number of iterations required for learning the Lagrangian and corresponding error bounds.
This paper investigates the planning and control problems for multi-robot systems under linear temporal logic (LTL) specifications. In contrast to most of existing literature, which presumes a static and known environment, our study focuses on dynamic environments that can have unknown moving obstacles like humans walking through. Depending on whether local communication is allowed between robots, we consider two different online re-planning approaches. When local communication is allowed, we propose a local trajectory generation algorithm for each robot to resolve conflicts that are detected on-line. In the other case, i.e., no communication is allowed, we develop a model predictive controller to reactively avoid potential collisions. In both cases, task satisfaction is guaranteed whenever it is feasible. In addition, we consider the human-in-the-loop scenario where humans may additionally take control of one or multiple robots. We design a mixed initiative controller for each robot to prevent unsafe human behaviors while guarantee the LTL satisfaction. Using our previous developed ROS software package, several experiments are conducted to demonstrate the effectiveness and the applicability of the proposed strategies.
Model-based control is preferred for robotics applications due to its systematic approach to linearize and control the robot's nonlinear dynamics. The fundamental challenge involved in implementing a model-based controller for robotics applications is the time delay associated with the real-time computation of the robot dynamics. Due to the sequential structure of the robot's dynamic equation of motion, the multicore CPU cannot reduce the control algorithm execution time. A high-speed processor is required to maintain a higher sampling rate. Neural network-based modeling offers an excellent solution for developing a parallel structured equivalent model of the sequential model that is suitable for parallel processing. In this paper, a Deep neural network-based parallel structured 7 degrees of freedom human lower extremity exoskeleton robot controller is developed. Forty-nine densely connected neurons are arranged in four layers to estimate joint torque requirements for tracking trajectories. For training, the deep neural network, an analytical model-based data generation technique is presented. A trained deep neural network is used for real-time joint torque prediction and a PD controller is incorporated to mitigate the prediction errors. Simulation results show high trajectory tracking performances. The developed controller's stability analysis is proved. The robustness of the controller against the parameter variation is analyzed with the help of the analysis of variance (ANOVA). A comparative study between the developed controller and the Computed Torque Controller, Model Reference Computed Torque Controller, Sliding Mode Controller, Adaptive controller, and Linear Quadratic Regulator are presented while keeping the same robot dynamics.
The Dadda algorithm is a parallel structured multiplier, which is quite faster as compared to array multipliers, i.e., Booth, Braun, Baugh-Wooley, etc. However, it consumes more power and needs a larger number of gates for hardware implementation. In this paper, a modified-Dadda algorithm-based multiplier is designed using a proposed half-adder-based carry-select adder with a binary to excess-1 converter and an improved ripple-carry adder (RCA). The proposed design is simulated in different technologies, i.e., Taiwan Semiconductor Manufacturing Company (TSMC) 50nm, 90nm, and 120nm, and on different GHz frequencies, i.e., 0.5, 1, 2, and 3.33GHz. Specifically, the 4-bit circuit of the proposed design in TSMCs 50nm technology consumes 25uW of power at 3.33GHz with 76ps of delay. The simulation results reveal that the design is faster, more power-energy-efficient, and requires a smaller number of transistors for implementation as compared to some closely related works. The proposed design can be a promising candidate for low-power and low-cost digital controllers. In the end, the design has been compared with recent relevant works in the literature.
Existing protocols for byzantine fault tolerant distributed systems usually rely on the correct agents' ability to detect faulty agents and/or to detect the occurrence of some event or action on some correct agent. In this paper, we provide sufficient conditions that allow an agent to infer the appropriate beliefs from its history, and a procedure that allows these conditions to be checked in finite time. Our results thus provide essential stepping stones for developing efficient protocols and proving them correct.
Over the last decade, the use of autonomous drone systems for surveying, search and rescue, or last-mile delivery has increased exponentially. With the rise of these applications comes the need for highly robust, safety-critical algorithms which can operate drones in complex and uncertain environments. Additionally, flying fast enables drones to cover more ground which in turn increases productivity and further strengthens their use case. One proxy for developing algorithms used in high-speed navigation is the task of autonomous drone racing, where researchers program drones to fly through a sequence of gates and avoid obstacles as quickly as possible using onboard sensors and limited computational power. Speeds and accelerations exceed over 80 kph and 4 g respectively, raising significant challenges across perception, planning, control, and state estimation. To achieve maximum performance, systems require real-time algorithms that are robust to motion blur, high dynamic range, model uncertainties, aerodynamic disturbances, and often unpredictable opponents. This survey covers the progression of autonomous drone racing across model-based and learning-based approaches. We provide an overview of the field, its evolution over the years, and conclude with the biggest challenges and open questions to be faced in the future.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.