亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The significant advancements in Large Language Models (LLMs) have resulted in their widespread adoption across various tasks within Software Engineering (SE), including vulnerability detection and repair. Numerous recent studies have investigated the application of LLMs to enhance vulnerability detection and repair tasks. Despite the increasing research interest, there is currently no existing survey that focuses on the utilization of LLMs for vulnerability detection and repair. In this paper, we aim to bridge this gap by offering a systematic literature review of approaches aimed at improving vulnerability detection and repair through the utilization of LLMs. The review encompasses research work from leading SE, AI, and Security conferences and journals, covering 36 papers published at 21 distinct venues. By answering three key research questions, we aim to (1) summarize the LLMs employed in the relevant literature, (2) categorize various LLM adaptation techniques in vulnerability detection, and (3) classify various LLM adaptation techniques in vulnerability repair. Based on our findings, we have identified a series of challenges that still need to be tackled considering existing studies. Additionally, we have outlined a roadmap highlighting potential opportunities that we believe are pertinent and crucial for future research endeavors.

相關內容

大語言模型是基于海量文本數據訓練的深度學習模型。它不僅能夠生成自然語言文本,還能夠深入理解文本含義,處理各種自然語言任務,如文本摘要、問答、翻譯等。2023年,大語言模型及其在人工智能領域的應用已成為全球科技研究的熱點,其在規模上的增長尤為引人注目,參數量已從最初的十幾億躍升到如今的一萬億。參數量的提升使得模型能夠更加精細地捕捉人類語言微妙之處,更加深入地理解人類語言的復雜性。在過去的一年里,大語言模型在吸納新知識、分解復雜任務以及圖文對齊等多方面都有顯著提升。隨著技術的不斷成熟,它將不斷拓展其應用范圍,為人類提供更加智能化和個性化的服務,進一步改善人們的生活和生產方式。

Recent advancements in Chain-of-Thought prompting have facilitated significant breakthroughs for Large Language Models (LLMs) in complex reasoning tasks. Current research enhances the reasoning performance of LLMs by sampling multiple reasoning chains and ensembling based on the answer frequency. However, this approach fails in scenarios where the correct answers are in the minority. We identify this as a primary factor constraining the reasoning capabilities of LLMs, a limitation that cannot be resolved solely based on the predicted answers. To address this shortcoming, we introduce a hierarchical reasoning aggregation framework AoR (Aggregation of Reasoning), which selects answers based on the evaluation of reasoning chains. Additionally, AoR incorporates dynamic sampling, adjusting the number of reasoning chains in accordance with the complexity of the task. Experimental results on a series of complex reasoning tasks show that AoR outperforms prominent ensemble methods. Further analysis reveals that AoR not only adapts various LLMs but also achieves a superior performance ceiling when compared to current methods.

Ensuring that AI systems reliably and robustly avoid harmful or dangerous behaviours is a crucial challenge, especially for AI systems with a high degree of autonomy and general intelligence, or systems used in safety-critical contexts. In this paper, we will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI. The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees. This is achieved by the interplay of three core components: a world model (which provides a mathematical description of how the AI system affects the outside world), a safety specification (which is a mathematical description of what effects are acceptable), and a verifier (which provides an auditable proof certificate that the AI satisfies the safety specification relative to the world model). We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them. We also argue for the necessity of this approach to AI safety, and for the inadequacy of the main alternative approaches.

Knowledge-intensive tasks pose a significant challenge for Machine Learning (ML) techniques. Commonly adopted methods, such as Large Language Models (LLMs), often exhibit limitations when applied to such tasks. Nevertheless, there have been notable endeavours to mitigate these challenges, with a significant emphasis on augmenting LLMs through Knowledge Graphs (KGs). While KGs provide many advantages for representing knowledge, their development costs can deter extensive research and applications. Addressing this limitation, we introduce a framework for enriching embeddings of small-scale domain-specific Knowledge Graphs with well-established general-purpose KGs. Adopting our method, a modest domain-specific KG can benefit from a performance boost in downstream tasks when linked to a substantial general-purpose KG. Experimental evaluations demonstrate a notable enhancement, with up to a 44% increase observed in the Hits@10 metric. This relatively unexplored research direction can catalyze more frequent incorporation of KGs in knowledge-intensive tasks, resulting in more robust, reliable ML implementations, which hallucinates less than prevalent LLM solutions. Keywords: knowledge graph, knowledge graph completion, entity alignment, representation learning, machine learning

Event Stream Super-Resolution (ESR) aims to address the challenge of insufficient spatial resolution in event streams, which holds great significance for the application of event cameras in complex scenarios. Previous works for ESR often process positive and negative events in a mixed paradigm. This paradigm limits their ability to effectively model the unique characteristics of each event and mutually refine each other by considering their correlations. In this paper, we propose a bilateral event mining and complementary network (BMCNet) to fully leverage the potential of each event and capture the shared information to complement each other simultaneously. Specifically, we resort to a two-stream network to accomplish comprehensive mining of each type of events individually. To facilitate the exchange of information between two streams, we propose a bilateral information exchange (BIE) module. This module is layer-wisely embedded between two streams, enabling the effective propagation of hierarchical global information while alleviating the impact of invalid information brought by inherent characteristics of events. The experimental results demonstrate that our approach outperforms the previous state-of-the-art methods in ESR, achieving performance improvements of over 11\% on both real and synthetic datasets. Moreover, our method significantly enhances the performance of event-based downstream tasks such as object recognition and video reconstruction. Our code is available at //github.com/Lqm26/BMCNet-ESR.

Large-scale Vision-Language Models (VLMs) have demonstrated exceptional performance in natural vision tasks, motivating researchers across domains to explore domain-specific VLMs. However, the construction of powerful domain-specific VLMs demands vast amounts of annotated data, substantial electrical energy, and computing resources, primarily accessible to industry, yet hindering VLM research in academia. To address this challenge and foster sustainable and equitable VLM research, we present the Generalized Domain Prompt Learning (GDPL) framework. GDPL facilitates the transfer of VLMs' robust recognition capabilities from natural vision to specialized domains, without the need for extensive data or resources. By leveraging small-scale domain-specific foundation models and minimal prompt samples, GDPL empowers the language branch with domain knowledge through quaternion networks, uncovering cross-modal relationships between domain-specific vision features and natural vision-based contextual embeddings. Simultaneously, GDPL guides the vision branch into specific domains through hierarchical propagation of generated vision prompt features, grounded in well-matched vision-language relations. Furthermore, to fully harness the domain adaptation potential of VLMs, we introduce a novel low-rank adaptation approach. Extensive experiments across diverse domains like remote sensing, medical imaging, geology, Synthetic Aperture Radar, and fluid dynamics, validate the efficacy of GDPL, demonstrating its ability to achieve state-of-the-art domain recognition performance in a prompt learning paradigm. Our framework paves the way for sustainable and inclusive VLM research, transcending the barriers between academia and industry.

The advent of Large Language Models (LLMs) has ushered in a new era for design science in Information Systems, demanding a paradigm shift in tailoring LLMs design for business contexts. We propose and test a novel framework to customize LLMs for general business contexts that aims to achieve three fundamental objectives simultaneously: (1) aligning conversational patterns, (2) integrating in-depth domain knowledge, and (3) embodying theory-driven soft skills and core principles. We design methodologies that combine domain-specific theory with Supervised Fine Tuning (SFT) to achieve these objectives simultaneously. We instantiate our proposed framework in the context of medical consultation. Specifically, we carefully construct a large volume of real doctors' consultation records and medical knowledge from multiple professional databases. Additionally, drawing on medical theory, we identify three soft skills and core principles of human doctors: professionalism, explainability, and emotional support, and design approaches to integrate these traits into LLMs. We demonstrate the feasibility of our framework using online experiments with thousands of real patients as well as evaluation by domain experts and consumers. Experimental results show that the customized LLM model substantially outperforms untuned base model in medical expertise as well as consumer satisfaction and trustworthiness, and it substantially reduces the gap between untuned LLMs and human doctors, elevating LLMs to the level of human experts. Additionally, we delve into the characteristics of textual consultation records and adopt interpretable machine learning techniques to identify what drives the performance gain. Finally, we showcase the practical value of our model through a decision support system designed to assist human doctors in a lab experiment.

Exchangeability concerning a continuous exposure, X, implies no confounding bias when identifying average exposure effects of X, AEE(X). When X is measured with error (Xep), two challenges arise in identifying AEE(X). Firstly, exchangeability regarding Xep does not equal exchangeability regarding X. Secondly, the necessity of the non-differential error assumption (NDEA), overly stringent in practice, remains uncertain. To address them, this article proposes unifying exchangeability and exposure and confounder measurement errors with three novel concepts. The first, Probabilistic Exchangeability (PE), states that the outcomes of those with Xep=e are probabilistically exchangeable with the outcomes of those truly exposed to X=eT. The relationship between AEE(Xep) and AEE(X) in risk difference and ratio scales is mathematically expressed as a probabilistic certainty, termed exchangeability probability (Pe). Squared Pe (Pe.sq) quantifies the extent to which AEE(Xep) differs from AEE(X) due to exposure measurement error not akin to confounding mechanisms. In realistic settings, the coefficient of determination (R.sq) in the regression of X against Xep may be sufficient to measure Pe.sq. The second concept, Emergent Pseudo Confounding (EPC), describes the bias introduced by exposure measurement error, akin to confounding mechanisms. PE can hold when EPC is controlled for, which is weaker than NDEA. The third, Emergent Confounding, describes when bias due to confounder measurement error arises. Adjustment for E(P)C can be performed like confounding adjustment to ensure PE. This paper provides justifies for using AEE(Xep) and maximum insight into potential divergence of AEE(Xep) from AEE(X) and its measurement. Differential errors do not necessarily compromise causal inference.

Amidst the recent strides in evaluating Large Language Models for Code (Code-LLMs), existing benchmarks have mainly focused on functional correctness, overlooking the importance of computational efficiency. To fill the gap, we present Mercury, the first computational efficiency benchmark for Code-LLMs. It comprises 1,889 Python tasks, each with adequate solutions to support a runtime distribution. Based on the distribution, we introduce a new metric Beyond, which computes a runtime-percentile-weighted Pass score to reflect functional correctness and computational efficiency simultaneously. On Mercury, leading Code-LLMs can achieve 67% on Pass, while less than 50% on Beyond. Given that an ideal Beyond score would be aligned with the Pass score, it indicates that while Code-LLMs exhibit impressive capabilities in generating functionally correct code, there remains a notable gap in their efficiency. Finally, our empirical experiments reveal that Direct Preference Optimization (DPO) serves as a robust baseline for enhancing computational efficiency compared with Supervised Fine Tuning (SFT), which paves a promising avenue for future exploration of efficient code generation.

Graph workloads pose a particularly challenging problem for query optimizers. They typically feature large queries made up of entirely many-to-many joins with complex correlations. This puts significant stress on traditional cardinality estimation methods which generally see catastrophic errors when estimating the size of queries with only a handful of joins. To overcome this, we propose COLOR, a framework for subgraph cardinality estimation which applies insights from graph compression theory to produce a compact summary that captures the global topology of the data graph. Further, we identify several key optimizations that enable tractable estimation over this summary even for large query graphs. We then evaluate several designs within this framework and find that they improve accuracy by up to 10$^3$x over all competing methods while maintaining fast inference, a small memory footprint, efficient construction, and graceful degradation under updates.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

北京阿比特科技有限公司