亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Melody harmonization, which involves generating a chord progression that complements a user-provided melody, continues to pose a significant challenge. A chord progression must not only be in harmony with the melody, but also interdependent on its rhythmic pattern. While previous neural network-based systems have been successful in producing chord progressions for given melodies, they have not adequately addressed controllable melody harmonization, nor have they focused on generating harmonic rhythms with flexibility in the rates or patterns of chord changes. This paper presents AutoHarmonizer, a novel system for harmonic density-controllable melody harmonization with such a flexible harmonic rhythm. AutoHarmonizer is equipped with an extensive vocabulary of 1,462 chord types and can generate chord progressions that vary in harmonic density for a given melody. Experimental results indicate that the AutoHarmonizer-generated chord progressions exhibit a diverse range of harmonic rhythms and that the system's controllable harmonic density is effective.

相關內容

Nowadays, the need for causal discovery is ubiquitous. A better understanding of not just the stochastic dependencies between parts of a system, but also the actual cause-effect relations, is essential for all parts of science. Thus, the need for reliable methods to detect causal directions is growing constantly. In the last 50 years, many causal discovery algorithms have emerged, but most of them are applicable only under the assumption that the systems have no feedback loops and that they are causally sufficient, i.e. that there are no unmeasured subsystems that can affect multiple measured variables. This is unfortunate since those restrictions can often not be presumed in practice. Feedback is an integral feature of many processes, and real-world systems are rarely completely isolated and fully measured. Fortunately, in recent years, several techniques, that can cope with cyclic, causally insufficient systems, have been developed. And with multiple methods available, a practical application of those algorithms now requires knowledge of the respective strengths and weaknesses. Here, we focus on the problem of causal discovery for sparse linear models which are allowed to have cycles and hidden confounders. We have prepared a comprehensive and thorough comparative study of four causal discovery techniques: two versions of the LLC method [10] and two variants of the ASP-based algorithm [11]. The evaluation investigates the performance of those techniques for various experiments with multiple interventional setups and different dataset sizes.

Recent advances in large language models elicit reasoning in a chain-of-thought that allows models to decompose problems in a human-like fashion. Though this paradigm improves multi-step reasoning ability in language models, it is limited by being unimodal and applied mainly to question-answering tasks. We claim that incorporating visual augmentation into reasoning is essential, especially for complex, imaginative tasks. Consequently, we introduce VCoT, a novel method that leverages chain-of-thought prompting with vision-language grounding to recursively bridge the logical gaps within sequential data. Our method uses visual guidance to generate synthetic multimodal infillings that add consistent and novel information to reduce the logical gaps for downstream tasks that can benefit from temporal reasoning, as well as provide interpretability into models' multi-step reasoning. We apply VCoT to the Visual Storytelling and WikiHow summarization datasets and demonstrate through human evaluation that VCoT offers novel and consistent synthetic data augmentation beating chain-of-thought baselines, which can be used to enhance downstream performance.

Memory bandwidth is known to be a performance bottleneck for FPGA accelerators, especially when they deal with large multi-dimensional data-sets. A large body of work focuses on reducing of off-chip transfers, but few authors try to improve the efficiency of transfers. This paper addresses the later issue by proposing (i) a compiler-based approach to accelerator's data layout to maximize contiguous access to off-chip memory, and (ii) data packing and runtime compression techniques that take advantage of this layout to further improve memory performance. We show that our approach can decrease the I/O cycles up to $7\times$ compared to un-optimized memory accesses.

Encompassing numerous nationwide, statewide, and institutional initiatives in the United States, provider profiling has evolved into a major health care undertaking with ubiquitous applications, profound implications, and high-stakes consequences. In line with such a significant profile, the literature has accumulated a number of developments dedicated to enhancing the statistical paradigm of provider profiling. Tackling wide-ranging profiling issues, these methods typically adjust for risk factors using linear predictors. While this approach is simple, it can be too restrictive to characterize complex and dynamic factor-outcome associations in certain contexts. One such example arises from evaluating dialysis facilities treating Medicare beneficiaries with end-stage renal disease. It is of primary interest to consider how the coronavirus disease (COVID-19) affected 30-day unplanned readmissions in 2020. The impact of COVID-19 on the risk of readmission varied dramatically across pandemic phases. To efficiently capture the variation while profiling facilities, we develop a generalized partially linear model (GPLM) that incorporates a neural network. Considering provider-level clustering, we implement the GPLM as a stratified sampling-based stochastic optimization algorithm that features accelerated convergence. Furthermore, an exact test is designed to identify under- and over-performing facilities, with an accompanying funnel plot to visualize profiles. The advantages of the proposed methods are demonstrated through simulation experiments and profiling dialysis facilities using 2020 Medicare claims from the United States Renal Data System.

Aggregated HPC resources have rigid allocation systems and programming models which struggle to adapt to diverse and changing workloads. Consequently, HPC systems fail to efficiently use the large pools of unused memory and increase the utilization of idle computing resources. Prior work attempted to increase the throughput and efficiency of supercomputing systems through workload co-location and resource disaggregation. However, these methods fall short of providing a solution that can be applied to existing systems without major hardware modifications and performance losses. In this paper, we improve the utilization of supercomputers by employing the new cloud paradigm of serverless computing. We show how serverless functions provide fine-grained access to the resources of batch-managed cluster nodes. We present an HPC-oriented Function-as-a-Service (FaaS) that satisfies the requirements of high-performance applications. We demonstrate a \emph{software resource disaggregation} approach where placing functions on unallocated and underutilized nodes allows idle cores and accelerators to be utilized while retaining near-native performance.

One of the major challenges in the coordination of large, open, collaborative, and commercial vehicle fleets is dynamic task allocation. Self-concerned individually rational vehicle drivers have both local and global objectives, which require coordination using some fair and efficient task allocation method. In this paper, we review the literature on scalable and dynamic task allocation focusing on deterministic and dynamic two-dimensional linear assignment problems. We focus on multiagent system representation of open vehicle fleets where dynamically appearing vehicles are represented by software agents that should be allocated to a set of dynamically appearing tasks. We give a comparison and critical analysis of recent research results focusing on centralized, distributed, and decentralized solution approaches. Moreover, we propose mathematical models for dynamic versions of the following assignment problems well known in combinatorial optimization: the assignment problem, bottleneck assignment problem, fair matching problem, dynamic minimum deviation assignment problem, $\sum_{k}$-assignment problem, the semiassignment problem, the assignment problem with side constraints, and the assignment problem while recognizing agent qualification; all while considering the main aspect of open vehicle fleets: random arrival of tasks and vehicles (agents) that may become available after assisting previous tasks or by participating in the fleet at times based on individual interest.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.

北京阿比特科技有限公司