亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deepfake techniques have been widely used for malicious purposes, prompting extensive research interest in developing Deepfake detection methods. Deepfake manipulations typically involve tampering with facial parts, which can result in inconsistencies across different parts of the face. For instance, Deepfake techniques may change smiling lips to an upset lip, while the eyes remain smiling. Existing detection methods depend on specific indicators of forgery, which tend to disappear as the forgery patterns are improved. To address the limitation, we propose Mover, a new Deepfake detection model that exploits unspecific facial part inconsistencies, which are inevitable weaknesses of Deepfake videos. Mover randomly masks regions of interest (ROIs) and recovers faces to learn unspecific features, which makes it difficult for fake faces to be recovered, while real faces can be easily recovered. Specifically, given a real face image, we first pretrain a masked autoencoder to learn facial part consistency by dividing faces into three parts and randomly masking ROIs, which are then recovered based on the unmasked facial parts. Furthermore, to maximize the discrepancy between real and fake videos, we propose a novel model with dual networks that utilize the pretrained encoder and masked autoencoder, respectively. 1) The pretrained encoder is finetuned for capturing the encoding of inconsistent information in the given video. 2) The pretrained masked autoencoder is utilized for mapping faces and distinguishing real and fake videos. Our extensive experiments on standard benchmarks demonstrate that Mover is highly effective.

相關內容

Auto-encoders (AEs) have the potential to be effective and generic tools for new physics searches at colliders, requiring little to no model-dependent assumptions. New hypothetical physics signals can be considered anomalies that deviate from the well-known background processes generally expected to describe the whole dataset. We present a search formulated as an anomaly detection (AD) problem, using an AE to define a criterion to decide about the physics nature of an event. In this work, we perform an AD search for manifestations of a dark version of strong force using raw detector images, which are large and very sparse, without leveraging any physics-based pre-processing or assumption on the signals. We propose a dual-encoder design which can learn a compact latent space through conditioning. In the context of multiple AD metrics, we present a clear improvement over competitive baselines and prior approaches. It is the first time that an AE is shown to exhibit excellent discrimination against multiple dark shower models, illustrating the suitability of this method as a performant, model-independent algorithm to deploy, e.g., in the trigger stage of LHC experiments such as ATLAS and CMS.

We propose an efficient abnormal event detection model based on a lightweight masked auto-encoder (AE) applied at the video frame level. The novelty of the proposed model is threefold. First, we introduce an approach to weight tokens based on motion gradients, thus avoiding learning to reconstruct the static background scene. Second, we integrate a teacher decoder and a student decoder into our architecture, leveraging the discrepancy between the outputs given by the two decoders to improve anomaly detection. Third, we generate synthetic abnormal events to augment the training videos, and task the masked AE model to jointly reconstruct the original frames (without anomalies) and the corresponding pixel-level anomaly maps. Our design leads to an efficient and effective model, as demonstrated by the extensive experiments carried out on three benchmarks: Avenue, ShanghaiTech and UCSD Ped2. The empirical results show that our model achieves an excellent trade-off between speed and accuracy, obtaining competitive AUC scores, while processing 1670 FPS. Hence, our model is between 8 and 70 times faster than competing methods. We also conduct an ablation study to justify our design.

Human motion prediction has achieved a brilliant performance with the help of CNNs, which facilitates human-machine cooperation. However, currently, there is no work evaluating the potential risk in human motion prediction when facing adversarial attacks, which may cause danger in real applications. The adversarial attack will face two problems against human motion prediction: 1. For naturalness, pose data is highly related to the physical dynamics of human skeletons where Lp norm constraints cannot constrain the adversarial example well; 2. Unlike the pixel value in images, pose data is diverse at scale because of the different acquisition equipment and the data processing, which makes it hard to set fixed parameters to perform attacks. To solve the problems above, we propose a new adversarial attack method that perturbs the input human motion sequence by maximizing the prediction error with physical constraints. Specifically, we introduce a novel adaptable scheme that facilitates the attack to suit the scale of the target pose and two physical constraints to enhance the imperceptibility of the adversarial example. The evaluating experiments on three datasets show that the prediction errors of all target models are enlarged significantly, which means current convolution-based human motion prediction models can be easily disturbed under the proposed attack. The quantitative analysis shows that prior knowledge and semantic information modeling can be the key to the adversarial robustness of human motion predictors. The qualitative results indicate that the adversarial sample is hard to be noticed when compared frame by frame but is relatively easy to be detected when the sample is animated.

Benchmarking initiatives support the meaningful comparison of competing solutions to prominent problems in speech and language processing. Successive benchmarking evaluations typically reflect a progressive evolution from ideal lab conditions towards to those encountered in the wild. ASVspoof, the spoofing and deepfake detection initiative and challenge series, has followed the same trend. This article provides a summary of the ASVspoof 2021 challenge and the results of 54 participating teams that submitted to the evaluation phase. For the logical access (LA) task, results indicate that countermeasures are robust to newly introduced encoding and transmission effects. Results for the physical access (PA) task indicate the potential to detect replay attacks in real, as opposed to simulated physical spaces, but a lack of robustness to variations between simulated and real acoustic environments. The Deepfake (DF) task, new to the 2021 edition, targets solutions to the detection of manipulated, compressed speech data posted online. While detection solutions offer some resilience to compression effects, they lack generalization across different source datasets. In addition to a summary of the top-performing systems for each task, new analyses of influential data factors and results for hidden data subsets, the article includes a review of post-challenge results, an outline of the principal challenge limitations and a road-map for the future of ASVspoof.

Depth estimation is a crucial step for image-guided intervention in robotic surgery and laparoscopic imaging system. Since per-pixel depth ground truth is difficult to acquire for laparoscopic image data, it is rarely possible to apply supervised depth estimation to surgical applications. As an alternative, self-supervised methods have been introduced to train depth estimators using only synchronized stereo image pairs. However, most recent work focused on the left-right consistency in 2D and ignored valuable inherent 3D information on the object in real world coordinates, meaning that the left-right 3D geometric structural consistency is not fully utilized. To overcome this limitation, we present M3Depth, a self-supervised depth estimator to leverage 3D geometric structural information hidden in stereo pairs while keeping monocular inference. The method also removes the influence of border regions unseen in at least one of the stereo images via masking, to enhance the correspondences between left and right images in overlapping areas. Intensive experiments show that our method outperforms previous self-supervised approaches on both a public dataset and a newly acquired dataset by a large margin, indicating a good generalization across different samples and laparoscopes. Code and data are available at //github.com/br0202/M3Depth.

Mental distress like depression and anxiety contribute to the largest proportion of the global burden of diseases. Automated diagnosis systems of such disorders, empowered by recent innovations in Artificial Intelligence, can pave the way to reduce the sufferings of the affected individuals. Development of such systems requires information-rich and balanced corpora. In this work, we introduce a novel mental distress analysis audio dataset DEPAC, labeled based on established thresholds on depression and anxiety standard screening tools. This large dataset comprises multiple speech tasks per individual, as well as relevant demographic information. Alongside, we present a feature set consisting of hand-curated acoustic and linguistic features, which were found effective in identifying signs of mental illnesses in human speech. Finally, we justify the quality and effectiveness of our proposed audio corpus and feature set in predicting depression severity by comparing the performance of baseline machine learning models built on this dataset with baseline models trained on other well-known depression corpora.

Change detection (CD) is to decouple object changes (i.e., object missing or appearing) from background changes (i.e., environment variations) like light and season variations in two images captured in the same scene over a long time span, presenting critical applications in disaster management, urban development, etc. In particular, the endless patterns of background changes require detectors to have a high generalization against unseen environment variations, making this task significantly challenging. Recent deep learning-based methods develop novel network architectures or optimization strategies with paired-training examples, which do not handle the generalization issue explicitly and require huge manual pixel-level annotation efforts. In this work, for the first attempt in the CD community, we study the generalization issue of CD from the perspective of data augmentation and develop a novel weakly supervised training algorithm that only needs image-level labels. Different from general augmentation techniques for classification, we propose the background-mixed augmentation that is specifically designed for change detection by augmenting examples under the guidance of a set of background-changing images and letting deep CD models see diverse environment variations. Moreover, we propose the augmented & real data consistency loss that encourages the generalization increase significantly. Our method as a general framework can enhance a wide range of existing deep learning-based detectors. We conduct extensive experiments in two public datasets and enhance four state-of-the-art methods, demonstrating the advantages of our method. We release the code at //github.com/tsingqguo/bgmix.

While road obstacle detection techniques have become increasingly effective, they typically ignore the fact that, in practice, the apparent size of the obstacles decreases as their distance to the vehicle increases. In this paper, we account for this by computing a scale map encoding the apparent size of a hypothetical object at every image location. We then leverage this perspective map to (i) generate training data by injecting onto the road synthetic objects whose size corresponds to the perspective foreshortening; and (ii) incorporate perspective information in the decoding part of the detection network to guide the obstacle detector. Our results on standard benchmarks show that, together, these two strategies significantly boost the obstacle detection performance, allowing our approach to consistently outperform state-of-the-art methods in terms of instance-level obstacle detection.

Recently, Blockchain-Enabled Federated Learning (BCFL), an innovative approach that combines the advantages of Federated Learning and Blockchain technology, is receiving great attention. Federated Learning (FL) allows multiple participants to jointly train machine learning models in a decentralized manner while maintaining data privacy and security. This paper proposes a reference architecture for blockchain-enabled federated learning, which enables multiple entities to collaboratively train machine learning models while preserving data privacy and security. A critical component of this architecture is the implementation of a decentralized identifier (DID)-based access system. DID introduces a decentralized, self-sovereign identity (ID) management system that allows participants to manage their IDs independently of central authorities. Within this proposed architecture, participants can authenticate and gain access to the federated learning platform via their DIDs, which are securely stored on the blockchain. The access system administers access control and permissions through the execution of smart contracts, further enhancing the security and decentralization of the system. This approach, integrating blockchain-enabled federated learning with a DID access system, offers a robust solution for collaborative machine learning in a distributed and secure manner. As a result, participants can contribute to global model training while maintaining data privacy and identity control without the need to share local data. These DIDs are stored on the blockchain and the access system uses smart contracts to manage access control and permissions. The source code will be available to the public soon.

Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.

北京阿比特科技有限公司