亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A major limitation for the broader scope of problems solvable by transformers is the quadratic scaling of computational complexity with input size. In this study, we investigate the recurrent memory augmentation of pre-trained transformer models to extend input context length while linearly scaling compute. Our approach demonstrates the capability to store information in memory for sequences of up to an unprecedented two million tokens while maintaining high retrieval accuracy. Experiments with language modeling tasks show perplexity improvement as the number of processed input segments increases. These results underscore the effectiveness of our method, which has significant potential to enhance long-term dependency handling in natural language understanding and generation tasks, as well as enable large-scale context processing for memory-intensive applications.

相關內容

In the design stage of a randomized experiment, one way to ensure treatment and control groups exhibit similar covariate distributions is to randomize treatment until some prespecified level of covariate balance is satisfied. This experimental design strategy is known as rerandomization. Most rerandomization methods utilize balance metrics based on a quadratic form $v^TAv$ , where $v$ is a vector of covariate mean differences and $A$ is a positive semi-definite matrix. In this work, we derive general results for treatment-versus-control rerandomization schemes that employ quadratic forms for covariate balance. In addition to allowing researchers to quickly derive properties of rerandomization schemes not previously considered, our theoretical results provide guidance on how to choose the matrix $A$ in practice. We find the Mahalanobis and Euclidean distances optimize different measures of covariate balance. Furthermore, we establish how the covariates' eigenstructure and their relationship to the outcomes dictates which matrix $A$ yields the most precise mean-difference estimator for the average treatment effect. We find that the Euclidean distance is minimax optimal, in the sense that the mean-difference estimator's precision is never too far from the optimal choice, regardless of the relationship between covariates and outcomes. Our theoretical results are verified via simulation, where we find that rerandomization using the Euclidean distance has better performance in high-dimensional settings and typically achieves greater variance reduction to the mean-difference estimator than other quadratic forms.

This work discusses the benefits of having multiple simulated environments with different degrees of realism for the development of algorithms in scenarios populated by autonomous nodes capable of communication and mobility. This approach aids the development experience and generates robust algorithms. It also proposes GrADyS-SIM NextGen as a solution that enables development on a single programming language and toolset over multiple environments with varying levels of realism. Finally, we illustrate the usefulness of this approach with a toy problem that makes use of the simulation framework, taking advantage of the proposed environments to iteratively develop a robust solution.

Pruning is a standard technique for reducing the computational cost of deep networks. Many advances in pruning leverage concepts from the Lottery Ticket Hypothesis (LTH). LTH reveals that inside a trained dense network exists sparse subnetworks (tickets) able to achieve similar accuracy (i.e., win the lottery - winning tickets). Pruning at initialization focuses on finding winning tickets without training a dense network. Studies on these concepts share the trend that subnetworks come from weight or filter pruning. In this work, we investigate LTH and pruning at initialization from the lens of layer pruning. First, we confirm the existence of winning tickets when the pruning process removes layers. Leveraged by this observation, we propose to discover these winning tickets at initialization, eliminating the requirement of heavy computational resources for training the initial (over-parameterized) dense network. Extensive experiments show that our winning tickets notably speed up the training phase and reduce up to 51% of carbon emission, an important step towards democratization and green Artificial Intelligence. Beyond computational benefits, our winning tickets exhibit robustness against adversarial and out-of-distribution examples. Finally, we show that our subnetworks easily win the lottery at initialization while tickets from filter removal (the standard structured LTH) hardly become winning tickets.

The ability to efficiently predict adsorption properties of zeolites can be of large benefit in accelerating the design process of novel materials. The existing configuration space for these materials is wide, while existing molecular simulation methods are computationally expensive. In this work, we propose a model which is 4 to 5 orders of magnitude faster at adsorption properties compared to molecular simulations. To validate the model, we generated datasets containing various aluminium configurations for the MOR, MFI, RHO and ITW zeolites along with their heat of adsorptions and Henry coefficients for CO$_2$, obtained from Monte Carlo simulations. The predictions obtained from the Machine Learning model are in agreement with the values obtained from the Monte Carlo simulations, confirming that the model can be used for property prediction. Furthermore, we show that the model can be used for identifying adsorption sites. Finally, we evaluate the capability of our model for generating novel zeolite configurations by using it in combination with a genetic algorithm.

The zero-error capacity of a channel (or Shannon capacity of a graph) quantifies how much information can be transmitted with no risk of error. In contrast to the Shannon capacity of a channel, the zero-error capacity has not even been shown to be computable: we have no convergent upper bounds. In this work, we present a new quantity, the zero-error {\em unitary} capacity, and show that it can be succinctly represented as the tensor product value of a quantum game. By studying the structure of finite automata, we show that the unitary capacity is within a controllable factor of the zero-error capacity. This allows new upper bounds through the sum-of-squares hierarchy, which converges to the commuting operator value of the game. Under the conjecture that the commuting operator and tensor product value of this game are equal, this would yield an algorithm for computing the zero-error capacity.

Optimal behaviours of a system to perform a specific task can be achieved by leveraging the coupling between trajectory optimization, stabilization, and design optimization. This approach is particularly advantageous for underactuated systems, which are systems that have fewer actuators than degrees of freedom and thus require for more elaborate control systems. This paper proposes a novel co-design algorithm, namely Robust Trajectory Control with Design optimization (RTC-D). An inner optimization layer (RTC) simultaneously performs direct transcription (DIRTRAN) to find a nominal trajectory while computing optimal hyperparameters for a stabilizing time-varying linear quadratic regulator (TVLQR). RTC-D augments RTC with a design optimization layer, maximizing the system's robustness through a time-varying Lyapunov-based region of attraction (ROA) analysis. This analysis provides a formal guarantee of stability for a set of off-nominal states. The proposed algorithm has been tested on two different underactuated systems: the torque-limited simple pendulum and the cart-pole. Extensive simulations of off-nominal initial conditions demonstrate improved robustness, while real-system experiments show increased insensitivity to torque disturbances.

We study dual number symmetric matrices, dual complex Hermitian matrices and dual quaternion Hermitian matrices in a unified frame of dual Hermitian matrices. Suppose we have a ring, which can be the real field, the complex field, or the quaternion ring. Then an $n \times n$ dual Hermitian matrix has $n$ dual number eigenvalues. We define supplement matrices for a dual Hermitian matrix. Supplement matrices are Hermitian matrices in the original ring. The standard parts of the eigenvalues of that dual Hermitian matrix are the eigenvalues of the standard part Hermitian matrix in the original ring, while the dual parts of the eigenvalues of that dual Hermitian matrix are the eigenvalues of those {supplement} matrices. Hence, by apply any practical method for computing eigenvalues of Hermitian matrices in the original ring, we have a practical method for computing eigenvalues of a dual Hermitian matrix. We call this method the supplement matrix method. Applications to low rank approximation and generalized inverses of dual matrices, dual least squares problem and formation control are discussed. Numerical experiments are reported.

Considering voting rules based on evaluation inputs rather than preference rankings modifies the paradigm of probabilistic studies of voting procedures. This article proposes several simulation models for generating evaluation-based voting inputs. These models can cope with dependent and non identical marginal distributions of the evaluations received by the candidates. A last part is devoted to fitting these models to real data sets.

We propose EmoDistill, a novel speech emotion recognition (SER) framework that leverages cross-modal knowledge distillation during training to learn strong linguistic and prosodic representations of emotion from speech. During inference, our method only uses a stream of speech signals to perform unimodal SER thus reducing computation overhead and avoiding run-time transcription and prosodic feature extraction errors. During training, our method distills information at both embedding and logit levels from a pair of pre-trained Prosodic and Linguistic teachers that are fine-tuned for SER. Experiments on the IEMOCAP benchmark demonstrate that our method outperforms other unimodal and multimodal techniques by a considerable margin, and achieves state-of-the-art performance of 77.49% unweighted accuracy and 78.91% weighted accuracy. Detailed ablation studies demonstrate the impact of each component of our method.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司