Objectives To develop and validate a deep learning-based diagnostic model incorporating uncertainty estimation so as to facilitate radiologists in the preoperative differentiation of the pathological subtypes of renal cell carcinoma (RCC) based on CT images. Methods Data from 668 consecutive patients, pathologically proven RCC, were retrospectively collected from Center 1. By using five-fold cross-validation, a deep learning model incorporating uncertainty estimation was developed to classify RCC subtypes into clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC (chRCC). An external validation set of 78 patients from Center 2 further evaluated the model's performance. Results In the five-fold cross-validation, the model's area under the receiver operating characteristic curve (AUC) for the classification of ccRCC, pRCC, and chRCC was 0.868 (95% CI: 0.826-0.923), 0.846 (95% CI: 0.812-0.886), and 0.839 (95% CI: 0.802-0.88), respectively. In the external validation set, the AUCs were 0.856 (95% CI: 0.838-0.882), 0.787 (95% CI: 0.757-0.818), and 0.793 (95% CI: 0.758-0.831) for ccRCC, pRCC, and chRCC, respectively. Conclusions The developed deep learning model demonstrated robust performance in predicting the pathological subtypes of RCC, while the incorporated uncertainty emphasized the importance of understanding model confidence, which is crucial for assisting clinical decision-making for patients with renal tumors. Clinical relevance statement Our deep learning approach, integrated with uncertainty estimation, offers clinicians a dual advantage: accurate RCC subtype predictions complemented by diagnostic confidence references, promoting informed decision-making for patients with RCC.
Reinforcement learning solely from an agent's self-generated data is often believed to be infeasible for learning on real robots, due to the amount of data needed. However, if done right, agents learning from real data can be surprisingly efficient through re-using previously collected sub-optimal data. In this paper we demonstrate how the increased understanding of off-policy learning methods and their embedding in an iterative online/offline scheme (``collect and infer'') can drastically improve data-efficiency by using all the collected experience, which empowers learning from real robot experience only. Moreover, the resulting policy improves significantly over the state of the art on a recently proposed real robot manipulation benchmark. Our approach learns end-to-end, directly from pixels, and does not rely on additional human domain knowledge such as a simulator or demonstrations.
In modern federated learning, one of the main challenges is to account for inherent heterogeneity and the diverse nature of data distributions for different clients. This problem is often addressed by introducing personalization of the models towards the data distribution of the particular client. However, a personalized model might be unreliable when applied to the data that is not typical for this client. Eventually, it may perform worse for these data than the non-personalized global model trained in a federated way on the data from all the clients. This paper presents a new approach to federated learning that allows selecting a model from global and personalized ones that would perform better for a particular input point. It is achieved through a careful modeling of predictive uncertainties that helps to detect local and global in- and out-of-distribution data and use this information to select the model that is confident in a prediction. The comprehensive experimental evaluation on the popular real-world image datasets shows the superior performance of the model in the presence of out-of-distribution data while performing on par with state-of-the-art personalized federated learning algorithms in the standard scenarios.
This study introduces an innovative framework designed to automate tasks by interacting with UIs through a sequential, human-like problem-solving approach. Our approach initially transforms UI screenshots into natural language explanations through a vision-based UI analysis, circumventing traditional view hierarchy limitations. It then methodically engages with each interface, guiding the LLM to pinpoint and act on relevant UI elements, thus bolstering both precision and functionality. Employing the ERNIE Bot LLM, our approach has been demonstrated to surpass existing methodologies. It delivers superior UI interpretation across various datasets and exhibits remarkable efficiency in automating varied tasks on an Android smartphone, outperforming human capabilities in intricate tasks and significantly enhancing the PBD process.
The aim of this paper is to provide a theoretically founded investigation of state-of-the-art learning approaches for inverse problems. We give an extended definition of regularization methods and their convergence in terms of the underlying data distributions, which paves the way for future theoretical studies. Based on a simple spectral learning model previously introduced for supervised learning, we investigate some key properties of different learning paradigms for inverse problems, which can be formulated independently of specific architectures. In particular we investigate the regularization properties, bias, and critical dependence on training data distributions. Moreover, our framework allows to highlight and compare the specific behavior of the different paradigms in the infinite-dimensional limit.
Due to the advantages of leveraging unlabeled data and learning meaningful representations, semi-supervised learning and contrastive learning have been progressively combined to achieve better performances in popular applications with few labeled data and abundant unlabeled data. One common manner is assigning pseudo-labels to unlabeled samples and selecting positive and negative samples from pseudo-labeled samples to apply contrastive learning. However, the real-world data may be imbalanced, causing pseudo-labels to be biased toward the majority classes and further undermining the effectiveness of contrastive learning. To address the challenge, we propose Contrastive Learning with Augmented Features (CLAF). We design a class-dependent feature augmentation module to alleviate the scarcity of minority class samples in contrastive learning. For each pseudo-labeled sample, we select positive and negative samples from labeled data instead of unlabeled data to compute contrastive loss. Comprehensive experiments on imbalanced image classification datasets demonstrate the effectiveness of CLAF in the context of imbalanced semi-supervised learning.
Rationalization empowers deep learning models with self-explaining capabilities through a cooperative game, where a generator selects a semantically consistent subset of the input as a rationale, and a subsequent predictor makes predictions based on the selected rationale. In this paper, we discover that rationalization is prone to a problem named \emph{rationale shift}, which arises from the algorithmic bias of the cooperative game. Rationale shift refers to a situation where the semantics of the selected rationale may deviate from the original input, but the predictor still produces accurate predictions based on the deviation, resulting in a compromised generator with misleading feedback. To address this issue, we first demonstrate the importance of the alignment between the rationale and the full input through both empirical observations and theoretical analysis. Subsequently, we introduce a novel approach called DAR (\textbf{D}iscriminatively \textbf{A}ligned \textbf{R}ationalization), which utilizes an auxiliary module pretrained on the full input to discriminatively align the selected rationale and the original input. We theoretically illustrate how DAR accomplishes the desired alignment, thereby overcoming the rationale shift problem. The experiments on two widely used real-world benchmarks show that the proposed method significantly improves the explanation quality (measured by the overlap between the model-selected explanation and the human-annotated rationale) as compared to state-of-the-art techniques. Additionally, results on two synthetic settings further validate the effectiveness of DAR in addressing the rationale shift problem.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the gradients of different examples during training. Intuitively, if the per-example gradients are well-aligned, that is, if they are coherent, then one may expect GD to be (algorithmically) stable, and hence generalize well. We formalize this argument with an easy to compute and interpretable metric for coherence, and show that the metric takes on very different values on real and random datasets for several common vision networks. The theory also explains a number of other phenomena in deep learning, such as why some examples are reliably learned earlier than others, why early stopping works, and why it is possible to learn from noisy labels. Moreover, since the theory provides a causal explanation of how GD finds a well-generalizing solution when one exists, it motivates a class of simple modifications to GD that attenuate memorization and improve generalization. Generalization in deep learning is an extremely broad phenomenon, and therefore, it requires an equally general explanation. We conclude with a survey of alternative lines of attack on this problem, and argue that the proposed approach is the most viable one on this basis.
Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.