亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, learning-based approaches have revolutionized motion planning. The data generation process for these methods involves caching a large number of high quality paths for different queries (start, goal pairs) in various environments. Conventionally, a uniform random strategy is used for sampling these queries. However, this leads to inclusion of "trivial paths" in the dataset (e.g.,, straight line paths in case of length-optimal planning), which can be solved efficiently if the planner has access to a steering function. This work proposes a "non-trivial" query sampling procedure to add more complex paths in the dataset. Numerical experiments show that a higher success rate can be attained for neural planners trained on such a non-trivial dataset.

相關內容

Data in many real-world applications are often accumulated over time, like a stream. In contrast to conventional machine learning studies that focus on learning from a given training data set, learning from data streams cannot ignore the fact that the incoming data stream can be potentially endless with overwhelming size and unknown changes, and it is impractical to assume to have sufficient computational/storage resource such that all received data can be handled in time. Thus, the generalization performance of learning from data streams depends not only on how many data have been received, but also on how many data can be well exploited timely, with resource and rapidity concerns, in addition to the ability of learning algorithm and complexity of the problem. For this purpose, in this article we introduce the notion of machine learning throughput, define Stream Efficient Learning and present a preliminary theoretical framework.

Adversarial contrastive learning (ACL) does not require expensive data annotations but outputs a robust representation that withstands adversarial attacks and also generalizes to a wide range of downstream tasks. However, ACL needs tremendous running time to generate the adversarial variants of all training data, which limits its scalability to large datasets. To speed up ACL, this paper proposes a robustness-aware coreset selection (RCS) method. RCS does not require label information and searches for an informative subset that minimizes a representational divergence, which is the distance of the representation between natural data and their virtual adversarial variants. The vanilla solution of RCS via traversing all possible subsets is computationally prohibitive. Therefore, we theoretically transform RCS into a surrogate problem of submodular maximization, of which the greedy search is an efficient solution with an optimality guarantee for the original problem. Empirically, our comprehensive results corroborate that RCS can speed up ACL by a large margin without significantly hurting the robustness transferability. Notably, to the best of our knowledge, we are the first to conduct ACL efficiently on the large-scale ImageNet-1K dataset to obtain an effective robust representation via RCS.

Emerged as a biology-inspired method, Spiking Neural Networks (SNNs) mimic the spiking nature of brain neurons and have received lots of research attention. SNNs deal with binary spikes as their activation and therefore derive extreme energy efficiency on hardware. However, it also leads to an intrinsic obstacle that training SNNs from scratch requires a re-definition of the firing function for computing gradient. Artificial Neural Networks (ANNs), however, are fully differentiable to be trained with gradient descent. In this paper, we propose a joint training framework of ANN and SNN, in which the ANN can guide the SNN's optimization. This joint framework contains two parts: First, the knowledge inside ANN is distilled to SNN by using multiple branches from the networks. Second, we restrict the parameters of ANN and SNN, where they share partial parameters and learn different singular weights. Extensive experiments over several widely used network structures show that our method consistently outperforms many other state-of-the-art training methods. For example, on the CIFAR100 classification task, the spiking ResNet-18 model trained by our method can reach to 77.39% top-1 accuracy with only 4 time steps.

Machine learning methods are increasingly used to build computationally inexpensive surrogates for complex physical models. The predictive capability of these surrogates suffers when data are noisy, sparse, or time-dependent. As we are interested in finding a surrogate that provides valid predictions of any potential future model evaluations, we introduce an online learning method empowered by optimizer-driven sampling. The method has two advantages over current approaches. First, it ensures that all turning points on the model response surface are included in the training data. Second, after any new model evaluations, surrogates are tested and "retrained" (updated) if the "score" drops below a validity threshold. Tests on benchmark functions reveal that optimizer-directed sampling generally outperforms traditional sampling methods in terms of accuracy around local extrema, even when the scoring metric favors overall accuracy. We apply our method to simulations of nuclear matter to demonstrate that highly accurate surrogates for the nuclear equation of state can be reliably auto-generated from expensive calculations using a few model evaluations.

The efficiency of sampling-based motion planning brings wide application in autonomous mobile robots. The conventional rapidly exploring random tree (RRT) algorithm and its variants have gained significant successes, but there are still challenges for the optimal motion planning of mobile robots in dynamic environments. In this paper, based on Bidirectional RRT and the use of an assisting metric (AM), we propose a novel motion planning algorithm, namely Bi-AM-RRT*. Different from the existing RRT-based methods, the AM is introduced in this paper to optimize the performance of robot motion planning in dynamic environments with obstacles. On this basis, the bidirectional search sampling strategy is employed to reduce the search time. Further, we present a new rewiring method to shorten path lengths. The effectiveness and efficiency of the proposed Bi-AM-RRT* are proved through comparative experiments in different environments. Experimental results show that the Bi-AM-RRT* algorithm can achieve better performance in terms of path length and search time, and always finds near-optimal paths with the shortest search time when the diffusion metric is used as the AM.

Data valuation is a powerful framework for providing statistical insights into which data are beneficial or detrimental to model training. Many Shapley-based data valuation methods have shown promising results in various downstream tasks, however, they are well known to be computationally challenging as it requires training a large number of models. As a result, it has been recognized as infeasible to apply to large datasets. To address this issue, we propose Data-OOB, a new data valuation method for a bagging model that utilizes the out-of-bag estimate. The proposed method is computationally efficient and can scale to millions of data by reusing trained weak learners. Specifically, Data-OOB takes less than 2.25 hours on a single CPU processor when there are $10^6$ samples to evaluate and the input dimension is 100. Furthermore, Data-OOB has solid theoretical interpretations in that it identifies the same important data point as the infinitesimal jackknife influence function when two different points are compared. We conduct comprehensive experiments using 12 classification datasets, each with thousands of sample sizes. We demonstrate that the proposed method significantly outperforms existing state-of-the-art data valuation methods in identifying mislabeled data and finding a set of helpful (or harmful) data points, highlighting the potential for applying data values in real-world applications.

To make progress towards multi-modal AI assistants which can guide users to achieve complex multi-step goals, we propose the task of Visual Planning for Assistance (VPA). Given a goal briefly described in natural language, e.g., "make a shelf", and a video of the user's progress so far, the aim of VPA is to obtain a plan, i.e., a sequence of actions such as "sand shelf", "paint shelf", etc., to achieve the goal. This requires assessing the user's progress from the untrimmed video, and relating it to the requirements of underlying goal, i.e., relevance of actions and ordering dependencies amongst them. Consequently, this requires handling long video history, and arbitrarily complex action dependencies. To address these challenges, we decompose VPA into video action segmentation and forecasting. We formulate the forecasting step as a multi-modal sequence modeling problem and present Visual Language Model based Planner (VLaMP), which leverages pre-trained LMs as the sequence model. We demonstrate that VLaMP performs significantly better than baselines w.r.t all metrics that evaluate the generated plan. Moreover, through extensive ablations, we also isolate the value of language pre-training, visual observations, and goal information on the performance. We will release our data, model, and code to enable future research on visual planning for assistance.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.

北京阿比特科技有限公司