亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an analysis of the optimal uplink (UL) SNR of a SIMO Reconfigurable Intelligent Surface (RIS)-aided wireless link. We assume that the channel between base station (BS) and RIS is a rank-1 LOS channel while the user (UE)-RIS and UE-BS channels are correlated Ricean. For the optimal RIS matrix, we derive an exact closed form expression for the mean SNR and an approximation for the SNR variance leading to an accurate gamma approximation to the distribution of the UL SNR. Furthermore, we analytically characterise the effects of correlation and the Ricean K-factor on SNR, showing that increasing the K-factor and correlation in the UE-BS channel can have negative effects on the mean SNR, while increasing the K-factor and correlation in the UE-RIS channel improves system performance. We also present favourable and unfavourable channel scenarios which provide insight into the sort of environments that improve or degrade the mean SNR. We also show that the relative gain in the mean SNR when transitioning from an unfavourable to a favourable environment saturates to $(4-\pi)/\pi$ as $N \rightarrow \infty $

相關內容

In this letter, we study efficient uplink channel estimation design for a simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted two-user communication systems. We first consider the time switching (TS) protocol for STAR-RIS and propose an efficient scheme to separately estimate the channels of the two users with optimized training (transmission/reflection) pattern. Next, we consider the energy splitting (ES) protocol for STAR-RIS under the practical coupled phase-shift model and devise a customized scheme to simultaneously estimate the channels of both users. Although the problem of minimizing the resultant channel estimation error for the ES protocol is difficult to solve, we propose an efficient algorithm to obtain a high-quality solution by jointly designing the pilot sequences, power-splitting ratio, and training patterns. Numerical results show the effectiveness of the proposed channel estimation designs and reveal that the STAR-RIS under the TS protocol achieves a smaller channel estimation error than the ES case.

Simultaneously transmitting/refracting and reflecting reconfigurable intelligent surface (STAR-RIS) has been introduced to achieve full coverage area. This paper investigate the performance of STAR-RIS assisted non-orthogonal multiple access (NOMA) networks over Rician fading channels, where the incidence signals sent by base station are reflected and transmitted to the nearby user and distant user, respectively. To evaluate the performance of STAR-RIS-NOMA networks, we derive new exact and asymptotic expressions of outage probability and ergodic rate for a pair of users, in which the imperfect successive interference cancellation (ipSIC) and perfect SIC (pSIC) schemes are taken into consideration. Based on the approximated results, the diversity orders of $zero$ and $ {\frac{{\mu _n^2K}}{{2{\Omega _n}}} + 1} $ are achieved for the nearby user with ipSIC/pSIC, while the diversity order of distant user is equal to ${\frac{{\mu _m^2 K}}{{2{\Omega _m}}}}$. The high signal-to-noise radio (SNR) slopes of ergodic rates for nearby user with pSIC and distant user are equal to $one$ and $zero$, respectively. In addition, the system throughput of STAR-RIS-NOMA is discussed in delay-limited and delay-tolerant modes. Simulation results are provided to verify the accuracy of the theoretical analyses and demonstrate that: 1) The outage probability of STAR-RIS-NOMA outperforms that of STAR-RIS assisted orthogonal multiple access (OMA) and conventional cooperative communication systems; 2) With the increasing of configurable elements $K$ and Rician factor $\kappa $, the STAR-RIS-NOMA networks are capable of attaining the enhanced performance; and 3) The ergodic rates of STAR-RIS-NOMA are superior to that of STAR-RIS-OMA.

Automated Driving Systems (ADSs) have seen rapid progress in recent years. To ensure the safety and reliability of these systems, extensive testings are being conducted before their future mass deployment. Testing the system on the road is the closest to real-world and desirable approach, but it is incredibly costly. Also, it is infeasible to cover rare corner cases using such real-world testing. Thus, a popular alternative is to evaluate an ADS's performance in some well-designed challenging scenarios, a.k.a. scenario-based testing. High-fidelity simulators have been widely used in this setting to maximize flexibility and convenience in testing what-if scenarios. Although many works have been proposed offering diverse frameworks/methods for testing specific systems, the comparisons and connections among these works are still missing. To bridge this gap, in this work, we provide a generic formulation of scenario-based testing in high-fidelity simulation and conduct a literature review on the existing works. We further compare them and present the open challenges as well as potential future research directions.

Adaptation of a wireless system to the polarization state of the propagation channel can improve reliability and throughput. This paper in particular considers polarization reconfigurable multiple input multiple output (PR-MIMO) systems, where both transmitter and receiver can change the (linear) polarization orientation at each element of their antenna arrays. We first introduce joint polarization pre-post coding to maximize bounds on the capacity and the maximum eigenvalue of the channel matrix. For this we first derive approximate closed form equations of optimal polarization vectors at one link end, and then use iterative joint polarization pre-post coding to pursue joint optimal polarization vectors at both link ends. Next we investigate the combination of PR-MIMO with hybrid antenna selection / maximum ratio transmission (PR-HS/MRT), which can achieve a remarkable improvement of channel capacity and symbol error rate (SER). Further, two novel schemes of element wise and global polarization reconfiguration are presented for PR-HS/MRT. Comprehensive simulation results indicate that the proposed schemes provide 3 to 5 dB SNR gain in PR-MIMO spatial multiplexing and approximately 3 dB SNR gain in PRHS/ MRT, with concomitant improvements of channel capacity and SER.

This paper is concerned with the phase estimation algorithm in quantum computing algorithms, especially the scenarios where (1) the input vector is not an eigenvector; (2) the unitary operator is not exactly implemented; (3) random approximations are used for the unitary operator, e.g., the QDRIFT method. We characterize the probability of computing the phase values in terms of the consistency error, including the residual error, Trotter splitting error, or statistical mean-square error.

X-ray polarimetry will soon open a new window on the high energy universe with the launch of NASA's Imaging X-ray Polarimetry Explorer (IXPE). Polarimeters are currently limited by their track reconstruction algorithms, which typically use linear estimators and do not consider individual event quality. We present a modern deep learning method for maximizing the sensitivity of X-ray telescopic observations with imaging polarimeters, with a focus on the gas pixel detectors (GPDs) to be flown on IXPE. We use a weighted maximum likelihood combination of predictions from a deep ensemble of ResNets, trained on Monte Carlo event simulations. We derive and apply the optimal event weighting for maximizing the polarization signal-to-noise ratio (SNR) in track reconstruction algorithms. For typical power-law source spectra, our method improves on the current state of the art, providing a ~40% decrease in required exposure times for a given SNR.

Intelligent reflecting surfaces (IRSs) are promising enablers for high-capacity wireless communication systems by constructing favorable channels between the transmitter and receiver. However, general, accurate, and tractable outage analysis for IRS-aided multiple-input-multiple-output (MIMO) systems is not available in the literature. In this paper, we first characterize the mutual information (MI) of IRS-aided MIMO systems by capitalizing on large random matrix theory (RMT). Based on this result, a closed-form approximation for the outage probability is derived and a gradient-based algorithm is proposed to minimize the outage probability with statistical channel state information (CSI). We also investigate the diversity-multiplexing tradeoff (DMT) with the finite signal-to-noise ratio (SNR). Based on these theoretical results, we further study the impact of the IRS size on system performance. In the high SNR regime, we provide closed-form expressions for the ergodic mutual information (EMI) and outage probability as a function of the IRS size, which analytically reveal that the benefit of increasing the IRS size saturates quickly. Simulation results validate the accuracy of the theoretical analysis and confirm the increasing cost for deploying larger IRSs to improve system performance. For example, for an IRS-aided MIMO system with 20 antennas at both the transmitter and receiver, we need to double the size of the IRS to increase the throughout from 90% to 95% of its maximum value.

Although the widely linear least mean square error (WLMMSE) receiver has been an appealing option for multiple-input-multiple-output (MIMO) wireless systems, a statistical understanding on its pose-detection signal-to-interference-plus-noise ratio (SINR) in detail is still missing. To this end, we consider a WLMMSE MIMO transmission system with rectilinear or quasi-rectilinear (QR) signals over the uncorrelated Rayleigh fading channel and investigate the statistical properties of its SINR for an arbitrary antenna configuration with $N_t$ transmit antennas and $N_r$ receive ones. We first derive an analytic probability density function (PDF) of the SINR in terms of the confluent hypergeometric function of the second kind, for WLMMSE MIMO systems with an arbitrary $N_r$ and $N_t=2, 3$. For a more general case in practice, i.e., $N_t>3$, we resort to the moment generating function to obtain an approximate but closed form PDF under some mild conditions, which, as expected, is more Gaussian-like as $2N_r-N_t$ increases. The so-derived PDFs are able to provide key insights into the WLMMSE MIMO receiver in terms of the outage probability, the symbol error rate, and the diversity gain, all presented in closed form. In particular, its diversity gain and the gain improvement over the conventional LMMSE one are explicitly quantified as $N_r-(N_t-1)/2$ and $(N_t-1)/2$, respectively. Finally, Monte Carlo simulations support the analysis.

We develop an autonomous navigation algorithm for a robot operating in two-dimensional environments cluttered with obstacles having arbitrary convex shapes. The proposed navigation approach relies on a hybrid feedback to guarantee global asymptotic stabilization of the robot towards a predefined target location while ensuring the forward invariance of the obstacle-free workspace. The main idea consists in designing an appropriate switching strategy between the move-to-target mode and the obstacle-avoidance mode based on the proximity of the robot with respect to the nearest obstacle. The proposed hybrid controller generates continuous velocity input trajectories when the robot is initialized away from the boundaries of the unsafe regions. Finally, we provide an algorithmic procedure for the sensor-based implementation of the proposed hybrid controller and validate its effectiveness through some simulation results.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司