亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automated certificate authorities (CAs) have expanded the reach of public key infrastructure on the web and for software signing. The certificates that these CAs issue attest to proof of control of some digital identity. Some of these automated CAs issue certificates in response to client authentication using OpenID Connect (OIDC, an extension of OAuth 2.0). This places these CAs in a position to impersonate any identity. Mitigations for this risk, like certificate transparency and signature thresholds, have emerged, but these mitigations only detect or raise the difficulty of compromise. Researchers have proposed alternatives to CAs in this setting, but many of these alternatives would require prohibitive changes to deployed authentication protocols. In this work, we propose a cryptographic technique for reducing trust in these automated CAs. When issuing a certificate, the CAs embed a proof of authentication from the subject of the certificate -- but without enabling replay attacks. We explain multiple methods for achieving this with tradeoffs between user privacy, performance, and changes to existing infrastructure. We implement a proof of concept for a method using Guillou-Quisquater signatures that works out-of-the-box with existing OIDC deployments for the open-source Sigstore CA, finding that minimal modifications are required.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Variability constraints are an integral part of the requirements for a configurable system. The constraints specified in the requirements on the legal combinations of options define the space of potential valid configurations for the system-to-be. This paper reports on our experience with the variability-related requirements constraints of a flight software framework used by multiple space missions. A challenge that we saw for practitioners using the current framework, now open-sourced, is that the specifications of its variability-related requirements and constraints are dispersed across several documents, rather than being centralized in the software requirements specification. Such dispersion can contribute to misunderstandings of the side-effects of design choices, increased effort for developers, and bugs during operations. Based on our experience, we propose a new software variability model, similar to a product-line feature model, in the flight software framework. We describe the structured technique by which our model is developed, demonstrate its use, and evaluate it on a key service module of the flight software. Results show that our lightweight modeling technique helped find missing and inconsistent variability-related requirements and constraints. More generally, we suggest that a variability modeling technique such as this can be an efficient way for developers to centralize the specification and improve the analysis of dispersed variability-related requirements and constraints in other configurable systems.

Third-party libraries (TPLs) have become an essential component of software, accelerating development and reducing maintenance costs. However, breaking changes often occur during the upgrades of TPLs and prevent client programs from moving forward. Semantic versioning (SemVer) has been applied to standardize the versions of releases according to compatibility, but not all releases follow SemVer compliance. Lots of work focuses on SemVer compliance in ecosystems such as Java and JavaScript beyond Golang (Go for short). Due to the lack of tools to detect breaking changes and dataset for Go, developers of TPLs do not know if breaking changes occur and affect client programs, and developers of client programs may hesitate to upgrade dependencies in terms of breaking changes. To bridge this gap, we conduct the first large-scale empirical study in the Go ecosystem to study SemVer compliance in terms of breaking changes and their impact. In detail, we purpose GoSVI (Go Semantic Versioning Insight) to detect breaking changes and analyze their impact by resolving identifiers in client programs and comparing their types with breaking changes. Moreover, we collect the first large-scale Go dataset with a dependency graph from GitHub, including 124K TPLs and 532K client programs. Based on the dataset, our results show that 86.3% of library upgrades follow SemVer compliance and 28.6% of no-major upgrades introduce breaking changes. Furthermore, the tendency to comply with SemVer has improved over time from 63.7% in 2018/09 to 92.2% in 2023/03. Finally, we find 33.3% of downstream client programs may be affected by breaking changes. These findings provide developers and users of TPLs with valuable insights to help make decisions related to SemVer.

The field of software verification has produced a wide array of algorithmic techniques that can prove a variety of properties of a given program. It has been demonstrated that the performance of these techniques can vary up to 4 orders of magnitude on the same verification problem. Even for verification experts, it is difficult to decide which tool will perform best on a given problem. For general users, deciding the best tool for their verification problem is effectively impossible. In this work, we present Graves, a selection strategy based on graph neural networks (GNNs). Graves generates a graph representation of a program from which a GNN predicts a score for a verifier that indicates its performance on the program. We evaluate Graves on a set of 10 verification tools and over 8000 verification problems and find that it improves the state-of-the-art in verification algorithm selection by 12%, or 8 percentage points. Further, it is able to verify 9% more problems than any existing verifier on our test set. Through a qualitative study on model interpretability, we find strong evidence that the Graves' model learns to base its predictions on factors that relate to the unique features of the algorithmic techniques.

Innovative enhancement in embedded system platforms, specifically hardware accelerations, significantly influence the application of deep learning in real-world scenarios. These innovations translate human labor efforts into automated intelligent systems employed in various areas such as autonomous driving, robotics, Internet-of-Things (IoT), and numerous other impactful applications. NVIDIA's Jetson platform is one of the pioneers in offering optimal performance regarding energy efficiency and throughput in the execution of deep learning algorithms. Previously, most benchmarking analysis was based on 2D images with a single deep learning model for each comparison result. In this paper, we implement an end-to-end video-based crime-scene anomaly detection system inputting from surveillance videos and the system is deployed and completely operates on multiple Jetson edge devices (Nano, AGX Xavier, Orin Nano). The comparison analysis includes the integration of Torch-TensorRT as a software developer kit from NVIDIA for the model performance optimisation. The system is built based on the PySlowfast open-source project from Facebook as the coding template. The end-to-end system process comprises the videos from camera, data preprocessing pipeline, feature extractor and the anomaly detection. We provide the experience of an AI-based system deployment on various Jetson Edge devices with Docker technology. Regarding anomaly detectors, a weakly supervised video-based deep learning model called Robust Temporal Feature Magnitude Learning (RTFM) is applied in the system. The approach system reaches 47.56 frames per second (FPS) inference speed on a Jetson edge device with only 3.11 GB RAM usage total. We also discover the promising Jetson device that the AI system achieves 15% better performance than the previous version of Jetson devices while consuming 50% less energy power.

Reduction of wireless network energy consumption is becoming increasingly important to reduce environmental footprint and operational costs. A key concept to achieve it is the use of lean transmission techniques that dynamically (de)activate hardware resources as a function of the load. In this paper, we propose a pioneering information-theoretic study of time-domain energy-saving techniques, relying on a practical hardware power consumption model of sleep and active modes. By minimizing the power consumption under a quality of service constraint (rate, latency), we propose simple yet powerful techniques to allocate power and choose which resources to activate or to put in sleep mode. Power consumption scaling regimes are identified. We show that a ``rush-to-sleep" approach (maximal power in fewest symbols followed by sleep) is only optimal in a high noise regime. It is shown how consumption can be made linear with the load and achieve massive energy reduction (factor of 10) at low-to-medium load. The trade-off between energy efficiency (EE) and spectral efficiency (SE) is also characterized, followed by a multi-user study based on time division multiple access (TDMA).

The objective of topic inference in research proposals aims to obtain the most suitable disciplinary division from the discipline system defined by a funding agency. The agency will subsequently find appropriate peer review experts from their database based on this division. Automated topic inference can reduce human errors caused by manual topic filling, bridge the knowledge gap between funding agencies and project applicants, and improve system efficiency. Existing methods focus on modeling this as a hierarchical multi-label classification problem, using generative models to iteratively infer the most appropriate topic information. However, these methods overlook the gap in scale between interdisciplinary research proposals and non-interdisciplinary ones, leading to an unjust phenomenon where the automated inference system categorizes interdisciplinary proposals as non-interdisciplinary, causing unfairness during the expert assignment. How can we address this data imbalance issue under a complex discipline system and hence resolve this unfairness? In this paper, we implement a topic label inference system based on a Transformer encoder-decoder architecture. Furthermore, we utilize interpolation techniques to create a series of pseudo-interdisciplinary proposals from non-interdisciplinary ones during training based on non-parametric indicators such as cross-topic probabilities and topic occurrence probabilities. This approach aims to reduce the bias of the system during model training. Finally, we conduct extensive experiments on a real-world dataset to verify the effectiveness of the proposed method. The experimental results demonstrate that our training strategy can significantly mitigate the unfairness generated in the topic inference task.

Traumatic brain injury (TBI) can cause cognitive, communication, and psychological challenges that profoundly limit independence in everyday life. Conversational Agents (CAs) can provide individuals with TBI with cognitive and communication support, although little is known about how they make use of CAs to address injury-related needs. In this study, we gave nine adults with TBI an at-home CA for four weeks to investigate use patterns, challenges, and design requirements, focusing particularly on injury-related use. The findings revealed significant gaps between the current capabilities of CAs and accessibility challenges faced by TBI users. We also identified 14 TBI-related activities that participants engaged in with CAs. We categorized those activities into four groups: mental health, cognitive activities, healthcare and rehabilitation, and routine activities. Design implications focus on accessibility improvements and functional designs of CAs that can better support the day-to-day needs of people with TBI.

Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.

The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

北京阿比特科技有限公司